
Technical Documentation

Marantz DH9300 XiVA™-Link
Protocol Spec. version 1.02

Jon Green and Richard Shaw, Imerge Ltd.
Revision 0.39, 2001-10-11

Copyright © 2001 Imerge Ltd. All rights reserved.

Imerge Ltd., Unit 6, Bar Hill Business Park, Saxon Way, Bar Hill, Cambridge CB3 8SL, UK
Tel +44 (0)1954 783600 Fax +44 (0)1954 783601 Email info@imerge.co.uk
Registered in England & Wales Registered no. 3360764 www.imerge.co.uk

Imerge America 620 Herndon Parkway, Suite 200, Herndon VA 20170 USA
Tel +1 703 481 9815 Fax +1 703 481 9802

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 2 of 201

Contents

Contents ...2
Figures..6
Tables ...6
Revision history ..6
Related documents ..7
Introduction...8

Purpose of document..8
Intended audience ..8
Overview...8

Legal notes...9
About this specification...10

Release notes and urgent alerts for this revision of the Specification..10
What is meant by version numbers and revision numbers...10

About the protocol .. 11
The nature of the protocol... 11
The protocol version number .. 11
How do protocol versions work?...12
Glossary..13

Protocol syntax...15
Introduction ...15
Definitions ...15
Description..16

The same again, in English ..18
The source-id..18
The destination-id ...18
Sequence characters..18
The command...19
The command’s parameters ...19
Each parameter’s optional argument..19
The checksum ..21
And finally…..22
A typical packet ...23

Notes on the command descriptions..24
Commands – general principles...25
Error and warning codes ..27
Version control..29

Requesting available versions..29
Pinging..30

Simple ping ...30
Starting a new session..31

Communications...32
Ethernet ..32
RS232 notes ...32
Configuring communication ..32
Setting communication values..34
Querying communication values ..34

Enumerating destinations...35
Polling for destinations..36
Polling for other entities ..37

Broadcasts and alerts...38
Broadcast..39
Alert...40

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 3 of 201

Simple play commands ..41
Basic play..42
Set play flags ..43
Stop...44
Pause..45
Skip within track..46

Selecting and examining media and tracks..47
Select media, playlists or individual tracks by ID..48
Select media by media number ..50
Select track within media or playlist by track number...52

Status and reporting ...54
Operating mode ..55
Play status ..56
Play flags ..57
Track status ..58
Track position..59
Track encoding types..60
Details of a track encoding type..61
Free space on the server..62
Free space on the server in terms of playback time...63
Status of online lookups..64
Status of underruns...65

Update notifications..66
Play-state update..67
Record state update ...69
Disc tray update..71
Media availability update ..72
On/offline update...73
TRACKDB change update..75
PLAYLISTDB change update ...77
Play flags update ..78
Online lookups update ..79
Underrun update...80
Cache close update ..81
Configuration update ..82
Power mode update..83

Simple search facilities...84
The type of an ID ..85
Track details..86
Basic media details (disc etc.) ..88
Media track details..89
Playlist details ...90
Playlist track details ..91

The database cache...92
How to use the caches ...92
The caches ...93
Opening a cache...95
Listing a cache..96
Searching within a cache’s ID fields (for those caches that support an ID)98
Searching within a cache’s NAME fields by matching a substring ...99
Searching using an exact string – NAME only ...101
Searching using an exact string – NAME and MEDIA (for those caches that support it).........102
Closing a marker...104

Advanced search facilities..105
What to use, and what not to use ...105

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 4 of 201

Of databases and categories..106
How to search...107
Listing the entries..108
The track database (TRACKDB) ..109
The playlist database (PLAYLISTDB)... 110
The static playlist database (SPLISTDB) ... 111
Search tags... 112
Obtaining categories... 113
Searching and counting .. 114
Enumerating a search... 116
Joining searches... 118
Committing category searches ... 119
Committing a playlist without searches ..120
Deleting search tags ...121
Renaming a playlist ..122
Reporting an external modification of the database ...123

Online operations ...124
Requesting on/offline state ...125
Networking error detail codes...126
Checking online status..127
Requesting a TRACKDB update ..128
Aborting a TRACKDB update ...130

Recording – ripping discs ...131
What happens when ripping ...131
Finding out which discs are configured ..132
Querying a drive’s status ..133
Describing a drive’s media..134
Describing a drive’s media’s tracks ..135
Opening or closing the drive door (ejecting or loading a disc) ...136
Rereading the drive’s media information ..137
Recording a disc’s contents..138
Aborting a ripping operation..139
Finding out the ripping status..140

Altering database contents...141
Changing track information...142
Changing media information...143
Changing playlist information..144

Deleting database contents..145
Delete a track (and its corresponding media file) ...146
Delete media...147
Delete playlist ...148

Configuring the server ..149
The LIST type ...149
The effect of configuration ..149
Configuration and destination-id...150
Getting the categories...152
Examining a category’s list of items..153
Read the values of a LIST item ..154
Read the value of an item...155
Set the value of an item..156

Querying and setting the power mode ...157
Querying the power mode ..157
Changing the power mode..158

Alternative requests for controllers with small input buffers...159
The name of a track..160

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 5 of 201

The artist of a track ...161
The compression format of a track ...162
The length of a track ...163
The media id of a track ...164
Media name ..165
Media artist ...166
Media genre..167
Media track count ...168
Media length ...169
Media type ..170
Media source ..171
ID of track within media ..172
The name of a playlist...173
The number of entries in a playlist..174
The length of a playlist..175
The type of a playlist...176
The track id of a playlist entry...177
The name of the current track...178
The artist of the current track..179
The position of the current track within its enclosing item ..180
The original position of the current track within its enclosing item ...181
The length of the current track..182
The track id of the current track..183
The media ID of a drive’s media ...184
The title of a drive’s media..185
The artist for a drive’s media ..186
The genre of a drive’s media ..187
Whether a drive’s media has been looked up ..188
The media number of a drive’s media ..189
The title of a track in a drive’s media ..190
The length of a track in a drive’s media..191
Retrieving a single field from a single database cache item ..192

Appendix A: Differences between 1.00 and 1.01 ...193
Appendix B: Differences between 1.01 and 1.02 ...194
Appendix C: Fixed errata..196
Appendix D: Publication approvals ..198
Appendix E: Revision history..199

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 6 of 201

Figures

Figure 1: C code to calculate check1 ...21
Figure 2: C code to calculate check2 ...22

Tables

Table i: Related documents ..7
Table ii: Glossary ..14
Table iii: Protocol syntax definitions..15
Table iv: Escape sequences...20
Table v: Sample packet breakdown by byte content ..23
Table vi: ACK parameters...25
Table vii: Common error codes (<ERROR><MESSAGE>XXmessage) ..28
Table viii: Common warning codes (<WARNING><MESSAGE>XXmessage)28
Table ix : Configurable communication items...33
Table x: Caches and their intended purposes..93
Table xi: Cache elements ...93
Table xii: Purposes of cache elements...94
Table xiii: TRACKDB categories...109
Table xiv: PLAYLISTDB categories .. 110
Table xv: SPLISTDB categories ... 111
Table xvi: Dialup modem connection error detail codes (<TYPE>1XXdetail)126
Table xvii: Configuration items..150
Table xviii: Publication approvals ...198
Table xix: Revision history ..201

Revision history

Please see the end of this document for a detailed revision history.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 7 of 201

Related documents

Tag Full Title Location Description
[AppGuide] XiVA™-Link Applications

Guide
Obtain from Imerge
Ltd.

[AppGuide] provides
guidelines for
developers working
with XiVA™-Link.

Table i: Related documents

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 8 of 201

Introduction

Purpose of document

This is the Specification for the XiVA™-Link communications protocol, used to control Imerge
Ltd.’s XiVAServer product line.

Intended audience

This Specification is provided to customers, OEMs, installers and other interested parties in order
to assist them in producing products to control XiVAServer-based products.

Overview

The Specification documents fully but tersely each command the XiVAServer products
understand. It does not attempt to provide guidance on implementation, for which purpose
[AppGuide] is the best reference.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 9 of 201

Legal notes

XiVALink is a protocol made freely available for control of XiVA based products by third party
applications. Implementation of this protocol and distribution of this documentation is made on
the following conditions:

1) Whilst every attempt is made to ensure the accuracy of the documentation contained here
within Imerge Ltd cannot be held liable for any errors or omissions and any consequential loss of
data.

2) Imerge Ltd cannot be held liable for any losses due to incorrect usage of the protocol on the
part of the user.

3) Whilst every attempt will be made to ensure backwards compatibility between protocol
revisions Imerge Ltd reserves the right to add, remove or amend any aspect of this protocol in
future revisions.

4) Imerge Ltd cannot be held liable for the failure of any or all aspects of this protocol to work for
every XiVA based product.

5) It is the responsibility of the recipient of this protocol to make themselves aware of changes
and upgrades to this protocol. Where possible (if Imerge holds a current email address for the
recipient) we will attempt to make you aware of new versions via email however Imerge Ltd
cannot be held responsible for any failure to do this. Changes to the protocol will be published on
our website (www.imerge.co.uk) by revision number.

XiVA and the XiVA logo are registered trademarks of Imerge Ltd.

All other trademarks used in this document are the properties of their respective owners, and are
hereby acknowledged.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 10 of 201

About this specification

This specification defines Imerge Ltd.’s definitions for a communications protocol between
controllers
and XiVATM media servers (XiVAServer).

Release notes and urgent alerts for this revision of the Specification

Please see the revision history at the end of this document for a full list of changes: only urgent
details are listed here:

Updated to final description of Version 1.02.

What is meant by version numbers and revision numbers

The protocol has a version number, in the form M.mm, where M is the major number and mm the
two-digit minor number.

Independently of the protocol’s version, this document has a revision number (in the form NNN),
which defines the version of the document’s text.

The protocol version and the document revision are independent of each other.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 11 of 201

About the protocol

The nature of the protocol

The structure of this protocol is intended to be bi-directional and symmetric: that is to say, the
general structure of the packet is the same whether it is being sent from a controller to a server,
or vice-versa.

Of course, many individual commands implemented in this protocol do implicitly define the rôles
of server and controller: it would be ridiculous for a server to tell a controller to $PLAY$ a track,
for instance.

The protocol is intended to enforce a medium-high level of data integrity. In order to achieve this,
messages can contain both a sequence character and checksum information.

Each packet sender maintains a cycle of sequence characters, sending the next sequence
character with every successive packet. Replies to a specific message will include that original
message’s sequence character. This allows the recipient to tell whether a new packet is a
resending of a previous one; it also allows the sender of a sequence of commands to work out,
for a given reply, to which command it was the response. As a beneficial side-effect, a command
with a sequence character can be resent, and the server will repeat the most recent reply to that
command.

The style of checksum information is designed to provide a high degree of confidence in the
integrity of the received data.

The protocol version number

The exact protocol is defined by a version number (M.mm), which has a major number (M) and a
minor number (mm). The initial protocol version number is 1.00.

The major number starts at 1.

The minor number is always in the range 00 to 99, and is always expressed as a two-digit
number.

The minor number must always be written in two digits, to avoid confusion. For example, version
1.02 has a minor number of 2 (or 02), whereas 1.20 has a minor number of 20. If the version was
written as “1.2”, it would not be obvious whether the writer meant 1.02 or 1.20.

In general, when minor additions such as extra commands are added, the minor number will be
incremented, so, for example, 1.00 would increase to 1.01. An increase in the major number
would indicate either a profound change in the protocols or the unlikely event of a minor number
reaching, and passing, 99.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 12 of 201

How do protocol versions work?

All servers support version 1.00.

If you want to use commands that were first introduced at a greater version number, use the
$VERSION$<SUPPORT> command to find out the greatest protocol version your server
supports. You will be able to use all commands defined up to and including this version number.

Once a command is defined at a given version number, that command will always be supported
in that form, by servers that support at least that version. The command may be enhanced in a
later protocol version, by adding new parameters or specifying new values for arguments to
existing parameters, but this will not alter the basic form in which it was first published.

These are the undertakings that we make in respect of commands defined in protocol
Specifications:

• Once we have defined a command, it will be honoured in that form in all future protocol
versions. Future protocol versions may define extra parameters or different arguments that
change the effect of the command. If you do not use those extra parameters or arguments,
the behaviour should remain as originally specified (see next for the one exception);

• Once a reply or an update has been defined, it will always remain as originally specified up to
the end of the parameters specified for that form of command. We may in future versions
add more parameters onto the end of the reply or update, but every time we formally specify
a reply or update message we “freeze” the contents of that packet up to that point;

• We may introduce new kinds of unsolicited messages at a later date, some of which may not
be the direct result of an issued command.

With these in mind, when you parse messages from a server, you should understand the
following rules:

• If you do not recognise a given message at all, ignore it. In future versions, we may send
unsolicited messages. If you ignore any messages you do not understand, you will not
introduce compatibility issues with controllers that only understand earlier protocol versions;

• Parse only as far as those parameters you expect to receive. Although we undertake not to
change the format of existing parameters once they have been specified, we may add more
to the end of the packet in later versions. If you are not expecting more parameters, don’t
parse for them.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 13 of 201

Glossary

Term Means
command This can be used to mean one of two things: either the sequence of bytes

following addressing (see Protocol syntax on page 15), or the abstract
concept of what they represent.

controller Some external hardware, which communicates with the RCP (see below)
using this protocol.

dynamic playlist A set of criteria by which tracks are selected at runtime. Which tracks are
played when a dynamic playlist is loaded depends upon which are
currently available in the database, and on local storage, and how they’re
categorised. Dynamic playlists are not supported at Version 1.00 of the
Protocol, but are expected to be introduced at later Versions.

entity One of the parties communicating with each other.
media Any media item containing one or more tracks, not necessarily all by the

same artist. Media may be an album, a video with several tracks, and so
on. In accordance with current usage, in this document we use “media” as
both singular and plural.

media ID (Also known as media-id.) Every media item is uniquely identified (in some
opaque way) in the server’s databases. Certain commands can use these
media IDs directly.

packet The sequence of bytes from the start of a transmission until the terminating
end-of-line sequence.

party Synonym for entity.
playlist Either an ordered, explicit list of items to play in order (see static playlist),

or a set of criteria by which to select tracks to play (see dynamic playlist).
playlist ID (Also known as playlist-id.) Every playlist is uniquely identified (in some

opaque way) in the server’s databases. Certain commands can use these
playlist IDs directly.

RCP An abbreviation for Remote-Controlled Player; the software for which this
document defines the controlling protocol. This term always refers to
software; never to the hardware upon which it runs or which it controls.

respondent The original recipient of a command. In complicated exchanges, where
after the original command, the respondent starts to send unsolicited
responses itself (the range of update commands is one example), it is still
known as the respondent.

revision The issue number of this document. This word is never used in connection
with protocol versions (see version below): it always refers to this
document.

sender The sender of the original command in a sequence. See respondent
above.

server A media server that is controlled by one or more controllers. (See
XiVAServer, below.)

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 14 of 201

session A sequence of XiVA-Link requests, replies and asynchronous notifications
between a start-point and end-point for which the definitions depend upon
the underlying transport protocol. For TCP/IP (e.g. over ethernet), the start-
point and end-point are the opening and closing of the socket via which
these packets will be communicated and the session is between a
XiVAServer and the controller which opens the socket. For serial
communications, a session currently begins when a XiVAServer receives
the first request sent by a controller using a particular name or when it
sends a $PING$<RESET>. The session ends with the next
$PING$<RESET> or when the XiVAServer is switched off or put into
standby mode.

static playlist A fixed and ordered list of tracks to play.
track A single segment of audio or video, continuous from beginning to end.
track ID (Also known as track-id.) Every track is uniquely identified (in some

opaque way) in the server’s databases. Certain commands can use these
track IDs directly.

vDB Virtual database. <TRACKDB>, <PLAYLISTDB> and <SPLISTDB>, for
example.

version Commands are introduced into the protocol at various versions. The initial
version is 1.00. Controllers can query a server’s supported protocol
versions, to decide which commands to send. The protocol version should
never be confused with the revision number of this document, which can
change if, for example, typographic errors must be fixed, or stylistic
changes made, leaving protocols unchanged.

XiVAServer The product name for the combination of software and hardware that
comprises the server. “XiVA” is a registered trademark of Imerge Ltd.

Table ii: Glossary

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 15 of 201

Protocol syntax

Introduction

This section formally describes the format of a packet. If you are not comfortable with formal
grammars, you may wish to skip it (coming back to it for occasional reference), and go straight on
to The same again, in English, on page 18.

Definitions

This document uses a variant on Extended Backus-Naur Representation to define protocols. In
this representation, all white space is declared explicitly:

Symbolism Means
Name The symbolic name of a component of the protocol.
‘b’ The literal character b (the ASCII character 98 (decimal)).
‘#42’ The ASCII character with value 42 (decimal), which is ‘*’.
‘#x42’ The ASCII character with value 42 (hexadecimal), which is ‘@’.
‘a’…’z’ One character in the range ‘a’ to ‘z’ inclusive.
“abc” A character sequence: ‘a’, then ‘b’, then ‘c’.
name1 | name2 Either name1 or name2, but not both.
[name] Zero or one occurrence of ‘name’.
name* Zero or more occurrences of ‘name’.
name+ One or more occurrences of ‘name’.
{name1 name2} The same as ‘name1 name2’, but allows repetition operators such

as *, + and so on to affect groups of symbols.
1{name}3 From 1 to 3 (inclusive) occurrences of ‘name’.
allow-set ~~ deny-set Everything in allow-set, less anything in deny-set (for example, {‘a’

… ‘z’ ~~ { ‘p’ | ‘q’ }} would mean all the characters in the range ‘a’ to
‘z’, excepting ‘p’ and ‘q’ }).

kids ::= jane john ‘kids’ is defined as shorthand for “whatever ‘jane’ means, followed
immediately by whatever ‘john’ means, with no intervening white
space”.

Table iii: Protocol syntax definitions

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 16 of 201

Description

Version 1.00 packets are constructed as follows:

Packet ::= addressing command parameters checksum end-of-line

addressing ::= source-id destination-id message-sequence-char

source-id ::= ‘#’ identifier ‘#’
destination-id ::= ‘@’ identifier ‘@’
message-sequence-char ::= sequence-char
identifier ::= 1{alphanum}20

command ::= ‘$’ command-word ‘$’ [reply-sequence-character]
command-word ::= 1 { upperalphanum } 10
reply-sequence-char ::= sequence-char

parameters ::= parameter*
parameter ::= param-name [argument]
param-name ::= ‘<’ param-word ‘>’
argument ::= standard-argument [localised-argument]
standard-argument ::= value-details
localised-argument ::= ‘%’ value-details
value-details ::= { { { ‘#32’ … ‘#126’ } ~~ delimiter-char } | escape-sequence }+
escape-sequence ::= ‘\’ { escape-char | escape-hex }
escape-char ::= ‘0’ | ‘n’ | ‘r’ | ‘t’ | delimiter-char
delimiter-char ::= ‘@’ | ‘#’ | ‘$’ | ‘%’ | ‘<’ | ‘>’ | ‘\’ | ‘~’
escape-hex ::= ‘x’ hex-byte
param-word ::= 1 { upperalphanum } 12

checksum ::= '~' check1 check2
check1 ::= hex-byte
check2 ::= hex-byte

end-of-line ::= ‘#13’ ‘#10’

sequence-char ::= alphanum
hex-byte ::= most-significant-hex-digit least-significant-hex-digit
most-significant-hex-digit ::= hex-digit
least-significant-hex-digit ::= hex-digit

upperalphanum ::= upper-alpha | numeric
alphanum ::= { upper-alpha | lower-alpha | numeric }
hex-digit ::= { upper-hex | lower-hex | numeric }

upper-alpha ::= ‘A’ … ‘Z’
lower-alpha ::= ‘a’ … ‘z’
upper-hex ::= ‘A’ … ‘F’
lower-hex ::= ‘a’ … ‘f’
numeric ::= ‘0’ … ‘9’

The overall packet length, including end-of-line, should not exceed 1024 characters.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 17 of 201

Version 1.01 packets

As above, except:

addressing ::= source-id destination-id [message-sequence-char]
checksum ::= ’~’ [check1 [check2]]

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 18 of 201

The same again, in English

The source-id

The packet starts with a source-id, which identifies the sender. This may be no more than 20
alphanumeric characters, enclosed in a pair of hash (‘#’) characters. The command originator is
responsible for deciding its own source-id name. For controllers, it is a good idea to pick a
source-id that is not likely to conflict with other devices controlling the same server at the same
time.

The destination-id

Immediately following that is the destination-id. This is in the same format as the source-id, but
delimited by ‘@’ characters instead. The destination-id uniquely identifies the intended recipient
of the message. This may refer to a single unit (the server in general), or the name given to a
logical destination (for example, the message could be a play command to the seventh output
source of the media server). The exact meaning of the destination-id is a matter for negotiation
between the communicating parties, or their respective programmers.

The destination-id server is reserved, and is the first destination with which a controller should
communicate, in order to gather information on other possible destinations.

The destination-id broadcast is also reserved, and is used (only) in the $BROADCAST$
command to indicate that the message is intended for all destinations capable of receiving it.

Sequence characters

Following the source and destination IDs is the message-sequence-char. This is the sequence
character for this message, and it is of the type sequence-char. Sequence-chars cycle from ‘0’
to ‘9’, then ‘A’ to ‘Z’, then ‘a’ to ‘z’, then back to ‘0’ again, indefinitely. There is no obligation upon
users of this protocol to require their first packet to have a sequence-character of '0': it can begin
anywhere in the cycle, providing it follows the sequence outlined here.

Successive packets that are sent by the same sender should be given successive message-
sequence-characters according to this scheme, except where the sender is re-transmitting a
packet for some reason.

At version 1.00, the message-sequence-char is mandatory.

For servers supporting version 1.01 onwards, the message-sequence-char is optional; however,
its use is very strongly recommended. Without it, the server cannot tell if a second command
identical to the first is a repeat of that command or a new command in its own right: behaviour
may become unpredictable in some circumstances. Furthermore, without it the sender has no
way of telling which reply corresponds with which packet it sent. This typically means that a
sender must wait for a reply before it can send the next packet. This can slow operations.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 19 of 201

The command

The command is a sequence of up to nine alphanumerics, delimited by ‘$’ characters.

If the command is a reply to a previous packet received, and that packet contained a message-
sequence-char, the second ‘$’ character is followed by a reply-sequence-char. This is a copy of
the sequence-char of the packet to which it is a reply.

The command’s parameters

The command may be followed by one or more parameters.

Each parameter consists of an angle-bracket-delimited alphanumeric sequence (which may
include spaces but may not begin with one), followed by an optional argument.

Each parameter’s optional argument

The optional argument begins with a standard-argument, which is what the Protocol formally
defines the argument to contain.

The standard-argument may optionally be followed by a percentage sign (‘%’), and a localised-
argument. This is a version of the same argument in the user’s local language, where applicable
(for example, where there are localised versions of the error messages for display to users).
More of this in a while.

Both standard-argument and localised-argument are value-details. These carry certain
constraints upon the characters they can contain. Specifically, they may never contain any of the
characters from the delimiter-chars set, with the one exception of ‘\’, where it’s used to introduce
an escape-sequence.

The escape-sequence is the means by which characters not normally allowed in value-details
may be included, by describing them in a special way.

An escape-sequence consists of a backslash (‘\’) followed by a special sequence of characters.
These are the defined sequences:

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 20 of 201

ASCII characters ASCII values
(decimal)

How to express them

0 to 31 \xNN

NN is the two-digit hexadecimal for the
ASCII value. For example, “\x0d” would
represent the CR (carriage-return) character,
whose ASCII value is 13, or 0d in
hexadecimal. You can use either upper- or
lower-case for the A…F hexadecimal
characters.

Some common characters in the ASCII
range 0…31 can be expressed using shorter
escape-sequences: see below.

NUL 0 \0

A backslash, followed by a single zero.
TAB 7 \t
LF 10 \n
CR 13 \r
@ # $ % < > \ ~ Various Precede the character with a backslash

For example, to escape the backslash
character, precede it with another (“\\”
instead of “\”). The tilde character would be
escaped thus: “\~”.

128 to 255 \xNN

Exactly as for the range 0…31, above.

Table iv: Escape sequences

So, for example, if you wanted to put into an argument the phrase “15% of $50 is $7.50”, with a
carriage return and linefeed following it, you would encode it as:

15\% of \$50 is \$7.50\r\n

The localised-argument is entirely optional, and is reserved for a version of the first string in the
user’s local language.

For example, on a French system a command to obtain the play state of zone 1 (in this case,
destination-id “Z01”), and its reply, might look like this:

#ctrlr#@Z01@1$STATUS$<MODE>~223b

#Z01#@ctrlr@tACK1<OK><MODE>PLAY%JOUE~0f6d

(Don’t forget, both packets are completed by CR (ASCII 13) and LF (ASCII 10).)

Note: servers supporting protocols up to version 1.02 do not yet generate localised-argument
information, but this facility may be implemented in later versions. It is documented here so that
controller designers can be forewarned.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 21 of 201

The checksum

At version 1.00, the checksum is a tilde (’~’), followed by a pair of ASCII hex digits (check1),
itself followed by a second pair of ASCII hex digits (check2).

At version 1.01, the tilde may be followed by:

• check1, followed by check2 (four ASCII hex digits in total);
• check1 only (two ASCII hex digits in total);
• nothing.

Check1 and check2 encode two different types of checksum data. These are calculated over
every byte in the packet up to (and including) the tilde. Check1 and check2 each represents 8 bits
of checksum data.

The check1 checksum is the low eight bits of the sum of those ASCII values. Here is some C
code that calculates this value:

unsigned char
CalcCheck1(const unsigned char *packet, int index_of_tilde)
{

unsigned char check1 = 0;
int index;

for (index = 0; index <= index_of_tilde; index++)
{ check1 += packet[index]; }

return check1;
}

Figure 1: C code to calculate check1

The check2 checksum is calculated as follows: start with an eight-bit value of zero (0x00). For
every successive byte being summed from first to last, exclusive-or that byte into our value, and
then rotate left by one bit position (i.e. the previous most significant bit becomes the new least
significant bit, and all other bits shift one place towards the most significant bit).

Here is some C code that calculates the check2 value:

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 22 of 201

unsigned char
CalcCheck2(const unsigned char *packet, int index_of_tilde)
{

unsigned char check2 = 0;
int index;

for (index = 0; index <= index_of_tilde; index++)
{

unsigned char overflow;

check2 ^= packet[index];
overflow = ((check2 >> 7) & 0x01);
check2 = (check2 << 1) + overflow;

}
return check2;

}

Figure 2: C code to calculate check2

If you are communicating at version 1.01 or greater, then in order to be able to be confident in
packet integrity, we strongly recommend that you use at least check1 in the packets you
generate; preferably also check2. If you are communicating at version 1.00, you must include
both. The RCP will always generate both checksums in the packets it sends.

Without checksums, parts of packets can go missing. This is a serious risk. Under some rare
circumstances, particularly whilst ripping operations are in progress, RS-232 communications
may become unreliable. The server relies upon checksum verification to ensure that packets it
receives are intact. Equally, any controller you write should verify at least check1, to have a
degree of confidence in the messages it receives.

And finally…

The checksum is followed by end-of-line, which is a carriage-return (ASCII 13, or CR) followed
by a line feed (ASCII 10, or LF). These must not be escaped with backslashes!

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 23 of 201

A typical packet

This is a typical reply:

#server#@ctlr@aACK3<OK>~4f24 (followed by CR and LF, of course)

The table, below, breaks down this packet into its individual bytes. The separate parts of the
packet have been shaded for clarity:

Char. value
ASCII

Dec. Hex.
Comments

35 0x23 Delimits the source-id.
s 115 0x73
e 101 0x65
r 114 0x72
v 118 0x76
e 101 0x65
r 114 0x72

The source-id (server, in this example) – the ID of the entity
sending the packet.

35 0x23 Delimits the source-id.
@ 64 0x40 Delimits the destination-id.
c 99 0x63
t 116 0x74
l 108 0x6c
r 114 0x72

The destination-id (ctlr, in this example) – the ID of the entity to
which the packet is sent.

@ 64 0x40 Delimits the destination-id.
a 97 0x61 The message-sequence-char.
$ 36 0x24 Delimits the command.
A 65 0x41
C 67 0x43
K 75 0x4b

The command (ACK).

$ 36 0x24 Delimits the command.

3 51 0x33
The reply-sequence-char – this would have been the message-
sequence-char in the packet that provoked this reply.

< 60 0x3c Begins a parameter.
O 79 0x4f
K 75 0x4b

A parameter (OK).

> 62 0x3e Ends a parameter.
~ 126 0x7e Introduces the checksum.
4 52 0x34
f 102 0x66

The check1 checksum.

2 50 0x32
4 52 0x34

The check2 checksum.

(CR) 13 0xd
(LF) 10 0xa

The end-of-line sequence.

Table v: Sample packet breakdown by byte content

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 24 of 201

Notes on the command descriptions

Where a list of parameters is given, this list is order-sensitive. In other words, whilst some of the
parameters may be optional, those that are supplied should be supplied in the exact order shown.

In the replies shown for each command, the parameters are also order-sensitive. After the end of
the parameters described in the Specification, you may receive some additional parameters. If
you do, ignore them. They apply to controllers that understand a protocol version later than
described here.

NOTE: for ease of display, we omit the addressing, reply-sequence-char, checksum and end-of-
line parts in most of the examples we show further on in this specification. Lines may also be
broken at convenient places for display. Please assume that newlines and white space are for
display purposes only, unless they have explicitly been described as being part of a packet.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 25 of 201

Commands – general principles

All packets in version 1.00 are limited to a maximum size of 1024 bytes, including the final end-of-
line sequence.

In general, the immediate reply to any successfully received command is the ACK command.
The parameter will be one of the following:

Parameter following ACK Means
<RXD> Message received, but will take some time to process.

Expect a further response.
<OK> Message received, and accepted. This will typically be

followed by more parameters that are specific to the
command to which this is a reply.

<WARNING>
<MESSAGE>XXmessage

Message received, and accepted, but there are conditions
of which the user must be made aware. XX is a two-digit
hexadecimal error code (hex-byte) pertinent to the
command; message gives an optional, user-friendly
description of the problem. A ‘%’ and a localised string
may follow it.

<ERROR>
<MESSAGE>XXmessage

Message received, but could not be executed. XX is a two-
digit hexadecimal error code (hex-byte) pertinent to the
command; message gives an optional, user-friendly
description of the problem. A ‘%’ and a localised string
may follow it.

Table vi: ACK parameters

NOTE: the sample error messages (as opposed to error codes) given in worked examples later
on in this protocol are not fixed, and are only shown for demonstration purposes. The actual
messages could, and probably will, differ dramatically from the ones shown.

All commands can cause an error response, and many can also cause warnings. In the
command descriptions that follow, only the successful responses have been detailed, unless
there are additional parameters for errors or warning raised by that command.

You should receive an ACK within 5 seconds of completing transmission of the corresponding
command. If it is not received within that time, the sender should $PING$ the respondent (see
page 30) to check whether the respondent is still alive. If it is, the packet should be resent exactly
as previously (i.e. using the same sequence character as in the original).

If your respondent cannot complete the command within this time frame, it should send you
ACK<RXD>, using the original message's message-sequence-char (if present) as its reply-
sequence-char. This indicates to you that there will be an indefinite delay before the command's
processing is completed.

If after three attempts at sending, the packet is still not acknowledged, you should assume
communications have been compromised, or that its command cannot be accepted for some
reason (for example, it is badly formatted or addressed). If this happens, $PING$ the destination
more than once. If it responds, there is something wrong with the original command, or a
problem with the server’s software. Either way, the command will not be accepted and you
should abandon attempts to send it.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 26 of 201

If you send a packet with an invalid destination to the server, you will receive a 1f error reply (no
such destination). The reply will appear to come from the incorrect destination: for example, a
packet (omitting checksum and sequence characters) containing:

#someone#@noone@$PING$

…will receive this reply, if there is no “noone” destination-id:

#noone#@someone@ACK<ERROR><MESSAGE>1fNo such destination

If a packet is structured correctly, but the command or its parameters are not recognised by the
server, you will receive this reply:

ACK<ERROR><MESSAGE>1eSyntax error

A packet that does not satisfy the basic packet format will simply be ignored.

If the controller does not respond at all to $PING$s, assume a complete communications
breakdown. If you have the facility to do so, back down to communications defaults (e.g. RS232
speeds and settings). Send $PING$ commands to the server destination until you get a reply.

If your controller has had to do this, it should probably assume that the server has been restarted,
and any transient settings have been lost. Once it has re-established communications, it should
go through its own cold-start sequence, sending whatever requests it would normally send in
order to put the server into a state it expects.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 27 of 201

Error and warning codes

A number of error and warning codes are common to most commands. Not all of these are used
for every command, of course. The explanation string which follows the error or warning code is
arbitrary, and for display purposes. It may be followed by a ‘%’ and a localised version of the
string.

XX= Means
00 Hardware problem
01 No media cued to play.
02 Can’t accept that value.
03 No media ready to play (i.e. no track is cued, and no useful default is set).
04 Message was corrupt and has been ignored, please resend.
05 Name is not unique (for named saves, such as playlist saves).
06 Wrong database given.
07 Wrong destination. You either sent a message to ‘server’ that can only be

handled by a playout destination, or vice-versa.
08 No playout server available. The RCP could not find a XiVAServer to control.

This may go away if you retry the message a few times; the XiVAServer is
usually invoked from a script that restarts it if it ceases to run.

09 No media database. This is a fatal error; the RCP cannot recover from this
problem.

0a [reserved]
0b [reserved]
0c Timed out communicating with the XiVAServer
0d Out of memory
0e Device busy
0f No such device
10 Not online (attempt to perform an online operation without a TCP/IP connection

active)
11 No such search tag
12 No such search database
13 No such ID
14 No such encoding
15 Lookup failed
16 Cache marker no longer valid
17 Network Manager unavailable
18 Network Manager error
19 License Manager unavailable
1a Missing binary (program)
1b File error
1c Read-only setting
1d Write-only setting
1e Syntax error
1f No such destination ID
20 Network configuration failure
21 Network connection failure
22 Network disconnection failure
23 Track not available
24 Media has no available tracks
25 Playlist has no available tracks

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 28 of 201

Introduced in Protocol version 1.02
26 Operation not permitted
27 Operation failed

Table vii: Common error codes (<ERROR><MESSAGE>XXmessage)

(Errors 01 and 03 are confusingly similar. Expect one or the other to be revoked and replaced
with one or more, better described, errors.)

XX= Means
80 No current state – used when (1) trying to make a change to an unset state, or

(2) commit an unset information state to a playing state.
81 Media unavailable (no media file for that track). No effect on server
82 No more media – like 81, but there were no files for any tracks until the end of

the media or playlist. The state will be unaffected.
83 Used in wrong play mode – for example, a $SELECT$ by media when the server

is playing from a playlist , or vice-versa.
84 Attempt to skip to before start or after end of track.
85 Already in that mode; no change (e.g. already playing when the $PLAY$

command came in). Do not rely on this error; often the RCP will silently ignore
duplicate requests of this type rather than complaining.

86 No such track exists.
87 Already idle.
88 Only partial success [note: this may be withdrawn or replaced]
89 Aborted by user
Introduced in Protocol version 1.02
8a Superseded
8b Redundant

Table viii: Common warning codes (<WARNING><MESSAGE>XXmessage)

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 29 of 201

Version control

All production servers should support requests available in protocol version 1.00 (though they
may return more information than specified in that version). If you wish to use commands or a
packet format from a later protocol version number, you should first query the server’s highest
protocol version, to ensure that it can understand your request.

Requesting available versions

Request

Command: $VERSION$
Parameters: <SUPPORT>

This command requests the version numbers supported by the respondent.

Reply

Command: ACK
Parameters: <OK>

<SUPPORT>MM.mm

The reply gives the highest protocol version number the server supports. Implicitly, it also
supports every previous version, back to 1.00.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 30 of 201

Pinging

The commands in this section are all related to “pinging” operations – ones in which one entity is
attempting to contact another and confirm that it is (still) responding to commands.

Simple ping

This command must be supported by all protocol clients. In other words, all protocol
clients, whether server or controller, must respond to this command.

This is just a means by which one entity can check that another is responding. The very fact of
receiving a reply indicates a success.

This command can be sent to any destination-id. If you receive a reply, it indicates that that
destination is functional and responding. (This doesn’t necessarily mean that other destinations
served by the same connection are also functional, although it does indicate that at least part of
the whole system is working.)

If you do not receive a reply within a reasonable amount of time (say, five seconds), send it again,
up to three times in total. Particularly in the case of serial communications, the recipient may
receive only part of the first packet successfully, so a first $PING$ may simply serve to put the
message buffer in a state where it will correctly receive the second one.

Request

Command: $PING$
Parameters: (none)

Reply

Command: ACK
Parameters <OK>

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 31 of 201

Starting a new session

The server stores various items of state information for the duration of a communication session.
The $PING$<RESET> request is provided to allow a controller to indicate to the server that it is
starting a new session and thus does not want the server to continue to store or use any state
information from any previous communication session. It is particularly important for a controller
connected by RS-232 to send this request when it restarts as the server cannot easily detect this
transition by other means.

As of version 1.02 of the Protocol, the $PING$<RESET> request causes the server to :-
• treat all subsequent requests as belonging to a new session (Normally the server

“remembers” the previous few commands that any controller sends, so that it can resend lost
replies if it sees the same command with the same message-sequence-char a second time,
rather than processing it as a new request.)

• use default communication settings (see Configuring communication on page 32) rather
than any in effect before the $PING$<RESET>, unless and until the settings are changed in
the new session

• cancel any updates (see Update notifications on page 66) requested by the controller
before the $PING$<RESET>

• prevent the controller from seeing any replies to any requests sent before the
$PING$<RESET>.

In version 1.01 of the Protocol, $PING$<RESET> had only the first effect (clearing the command
history) out of those listed above.

This command may be sent to any valid destination-id but server is recommended. It will clear
any information about the previous session regardless of the destination(s) with which that
information was stored.

Request

Command: $PING$
Parameters: <RESET>

Reply

Command: ACK
Parameters: <OK>

<RESET>

Assuming that the server receives and can reply to the message, this command always
succeeds. If you get no reply within five seconds, send it again (with a new message-sequence-
char, if possible).

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 32 of 201

Communications

Ethernet

To establish an ethernet connection with the server, open a socket on the server’s port 6789. You
can then send commands and receive replies using this socket.

Serial clients, front panel managers and so forth all use this interface to communicate with the
RCP.

RS232 notes

Communications using RS232 connections are one-to-one: that is to say, there is no hardware
“daisy-chaining” at all. It is perfectly allowable to use a “serial concentrator” to connect more than
one client to a serial port. If you do, bear in mind that each such client connected to a
concentrator must have its own source-id, and the concentrator must be responsible for routing
replies to the correct client based upon the destination-id in the reply.

At present, the serial speed supported at a given serial port is a server configuration setting, and
not changeable by software.

NOTE for developers working to previous revisions of this Specification: the $RS232$
commands are no longer supported, although they may be reintroduced in a later version.

Configuring communication

[Introduced in Protocol version 1.02]

 The default communications behaviour of a XiVAServer may not be appropriate for all
controllers. Some may not be able to cope with reply packets of the default maximum length
(1024 bytes) for the XiVA-Link protocol. Alternatives to the default escaping mechanism (see
Table iv: Escape sequences on page 20) for dealing with reserved characters, non-ASCII
characters and control characters within ASCII may be preferred. In addition, new character
encodings may be added in future versions.

The purpose of the $COMMS$ command is to allow attributes of the communication between a
XiVAServer and a particular controller to be set and queried. Changes of these attributes from the
default value affect communication only with that controller and persist only for the duration of the
session (see Glossary) in which they are made1. This is in contrast to configuration of the server
(see Configuring the server on page 149) which affects the response of the server to all
controllers and is (in general) persistent even between reboots. Also, although a similar syntax is
used, this command can only be sent to the server destination.

1 Strictly speaking, it is currently possible for a controller communicating with a XiVAServer via a
serial port to inherit a session initiated by a controller previously connected to the same serial port
and using the same source address. New session management requests are expected to be
included in the next version of the Protocol.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 33 of 201

The configurable items are grouped within categories. The current categories and items and their
effects on communication are shown in Table ix : Configurable communication items. Where
possible values are shown, the default value is shown in bold.

Category ItemName Effect
Encode Type The character encoding used in reply packets :-

• Latin1 : ISO 8859-1 encoding is used
• ASCII : ISO 8859-1 characters in the ranges 0 – 31 and 127 -
 255 are mapped to ASCII characters in the range 32 -
 126 (e.g. accented letters are mapped to the
 corresponding letters without accents).
• ASCIInd : As for ASCII, except that there are no (XiVA-Link)
 delimiters, all of them having been mapped to other
 ASCII characters.

Escape Type This specifies the type of escaping applied to characters resulting
from the above encoding :-
• Hex : as detailed in Table iv: Escape sequences on page 20
• None : no escaping is applied to characters other than XiVA-Link
 delimiter characters (which here includes carriage return,
 new line and tab).

Pkt MaxLen The maximum length (in the range 66 – 1024) for the reply packet to
one of the alternative requests for small-input-buffer controllers (see
page 157).2

Table ix : Configurable communication items

The six possible combinations of the current Encode/Type and Escape/Type values result in only
four distinguishable transformations of the original characters. Once Encode/Type has been set to
ASCII or ASCIInd, none of the resulting characters are subject to Hex encoding, so Escape/Type
will currently be irrelevant.

Note: The combination of an Encode/Type of Latin1 and an Escape/Type of None implies that an
8-bit clean communication channel is available. Thus it can be used via ethernet but not with the
current serial communication configuration.

2 Future versions of the protocol may guarantee this maximum length for all reply packets; the
alternative requests provide replacements for most of the commonly used requests which are
likely to contain multiple value strings and hence exceed the requested MaxLen.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 34 of 201

Setting communication values

[Request (and response) introduced in Protocol version 1.02]

This allows a controller to set the value of item within category to new-value.

Request

Command: $COMMS$
Parameters: <SET>category

<ITEM>item
<HAS>new-value

Reply

Command: ACK
Parameters: <OK>

<COMMS>
<SET>category
<ITEM>item
<HAS>new-value

Querying communication values

[Request (and response) introduced in Protocol version 1.02]

This allows a controller to read the value of item within category.

Request

Command: $COMMS$
Parameters: <READ>category

<ITEM>item

Reply

Command: ACK
Parameters: <OK>

<COMMS>
<READ>category
<ITEM>item
<HAS>value

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 35 of 201

Enumerating destinations

A given entity can enumerate the possible destinations it can command. It should always send its
request to the destination-id server. If no reply is received within one second, it should assume
that the server is absent or unwell.

At present, playout destinations are “named” Z01, Z02 and so on. Developers should not rely
upon this behaviour! In future, it is likely that we will allow and use more “human-friendly” names
for playout zones.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 36 of 201

Polling for destinations

Request

Command: WHO
Parameters: <DESTINATION>

Controllers use this command to find out the available destinations on a server. Servers must
always respond to WHO<DESTINATION> requests with destination-id server; controllers
must never do so unless they also provide server capabilities.

Reply

Command: ACK
Parameters: <DESTINATION>destination-id One or more of these

The reply will contain one or more <DESTINATION> entries.

The destination-id values are supplied without ‘@’ delimiters. The destination-id server will
always be listed; all other destination-ids may be presumed to be playout destinations.

Example

A typical exchange would be:

Sender: WHO<DESTINATION>
Respondent: ACK<OK><DESTINATION>server<DESTINATION>room1

<DESTINATION>room2

The controller could then send packets with a destination-id of @room2@.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 37 of 201

Polling for other entities

This command must be supported by protocol clients (other than the server).

Request

Command: WHO
Parameters: <LISTENING>

This command is for use by servers seeking to enumerate controllers on a common bus (for
example, Ethernet or GPIB), using some kind of broadcast mode.

Reply

Command: ACK
Parameters: <LISTENING>source-id

On common buses, the server should expect to receive more than one response (in this form) to
this command. It should listen for five seconds, not the usual one second, since bus collisions
and retries may cause delays in the receipt of some messages.

Duplicate responses with the same message-sequence-char should be assumed to be from the
same source, and duplicates ignored.

Duplicate responses with differing message-sequence-chars will be from different sources that
have unfortunately chosen the same source-id. How the server deals with this situation is beyond
the scope of this protocol, as it will depend upon how the controllers are connected to the server,
and considerations such as whether the server can present a user-interface. It is quite possible
that the server will broadcast a message for display (see next) on the offending controllers.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 38 of 201

Broadcasts and alerts

Broadcasts are unusual in that the recipients should not attempt to ACK them. Alerts are one-
to-one messages and require an acknowledgement.

Typically, servers use broadcasts, and controllers use alerts, but both servers and controllers
must honour both types of message.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 39 of 201

Broadcast

Request

Command: $BROADCAST$
Parameters: <MESSAGE>message

If the destination-id of this message is a specific name, then this message is targeted at a specific
destination-id.

If the destination-id of the message is @broadcast@, then it is intended for all destinations
capable of receiving the message.

The purpose of this command is to give the destination(s) a message to put on their displays, for
the user’s attention.

Reply

None. The sender of this message neither knows nor cares whether it reaches its destination(s).

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 40 of 201

Alert

This command must be supported by all protocol clients (other than the server).

Request

Command: $ALERT$
Parameters: <MESSAGE>message

This is similar to $BROADCAST$, but it is targeted at one destination, and requires an
acknowledgement. If possible, the destination should display the message. If it cannot, it should
raise a warning.

Reply

Command: ACK
Parameters: <OK>

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 41 of 201

Simple play commands

The server is said to be in one of three modes: play, pause or stop. Simple play commands alter
the current mode, or how it operates.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 42 of 201

Basic play

Request

Command: $PLAY$
Parameters: (none)

Play is an imperative command: it should be acted upon as soon as it is received. The currently
cued track will be played. This may be the first on a media, or in a playlist, or a previously chosen
track from some selection. If, however, playout has stopped as a result of the end of the currently
selected item being reached, then a new item must be selected or the playout position moved
back within the item (c.f. $PLAY$<SKIP> and $SELECT$<TRACK>) before a further $PLAY$
request will succeed. $PLAY$ will also restart a paused (see later) track from the point at which
playback had been paused.

Note for early implementers: if the $PLAY$<RATIO> command (mentioned in Specifications prior
to version 1.00) is reintroduced, $PLAY$ will also cancel the effects of a $PLAY$<RATIO>
command in progress.

Reply

Command: ACK
Parameters: <OK>

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 43 of 201

Set play flags

Request

Command: $PLAY$
Parameters: <FLAG>

<RANDOM>offon Optional – offon is OFF or ON
<REPEAT>offon Optional – offon is OFF or ON

One or both of <RANDOM> and <REPEAT> must be present.

This sets the play states for the playout destination to which the command is sent. Any changes
take effect after the end of the track currently playing (if any), and persist until explicitly changed
again.

The <RANDOM> flag causes the tracks from the current media or playlist to be played in an
arbitrary order.

The <REPEAT> flag causes the server to restart play from the beginning of the track, media or
playlist currently selected, once it has reached its end.

Reply

Command: ACK
Parameters: <OK>

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 44 of 201

Stop

Request

Command: $STOP$
Parameters: (none)

This stops playback and puts the player in STOP mode with immediate effect. STOP mode can
always be honoured. If the server is presently playing, or in PAUSE mode, STOP mode has the
effect of putting the play position back to the start of the present track.

Reply

Command ACK
Parameters: <OK>

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 45 of 201

Pause

Request

Command: $PAUSE$
Parameters: (none)

Pause is an imperative command: the server must honour it immediately if it can. It is possible to
put a server into PAUSE mode even if it is not presently playing, provided that a track is currently
selected. If the server has no track currently selected, an error will be raised.

The effect of PAUSE mode is to halt playing immediately (if in PLAY mode), and maintain the
current position in the current track.

Note that pause is not a toggle. Use the $PLAY$ command to resume playing from the paused
point.

Reply

Command: ACK
Parameters: <OK>

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 46 of 201

Skip within track

Request

Command: $PLAY$
Parameters: <SKIP>

then either:
<REL>nnn nnn is mandatory; can be negative

or:
<ABS>nnn nnn is optional; zero or positive; default 0

This command sets the play position within a track, and has two forms: relative or absolute.

The parameter for the <REL> form is the number of seconds to skip from the current playing
position. It is mandatory, and may be negative if the skip direction is to be negative.

The parameter for the <ABS> form is optional (default 0), and represents the number of seconds
from the start of the track.

The <REL> and <ABS> parameters are mutually incompatible. Exactly one must be given.

After having performed the skip, the server will revert to its previous play mode: if playing, it will
resume playing from the new position; if paused or stopped, it will be set at the new position.

The $PLAY$<SKIP> command will not skip back beyond the start or end of the current track. If
the command would take it beyond the start or end of the current track, it will position at the start
or end (respectively) and raise a warning. It will raise an error if there is no selected track.

Reply

Command: ACK
Parameters: <OK>

<POS>hh:mm:ss
<MSECS>MMM

or: <WARNING>
<MESSAGE>XXmessage
<POS>hh:mm:ss
<MSECS>MMM

or: <ERROR>
<MESSAGE>XXmessage

Unless an error is reported, the reply includes the new track position, in hours, minutes and
seconds, plus milliseconds in the <MSECS> parameter.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 47 of 201

Selecting and examining media and tracks

This set of commands is provided in order for controllers to tell the server which media, playlist or
track to load, ready for play. There are also commands to select individual tracks within media or
playlists, by their index number.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 48 of 201

Select media, playlists or individual tracks by ID

Tracks, media and playlists all have unique IDs. This command uses an ID to define the current
play selection. The IDs can be obtained by the appropriate search commands (see later).

Request

Command: $SELECT$
Parameters: <ITEMTYPE> Optional : see below [Introduced at version 1.02]

<ID>id

[Introduced at Protocol version 1.02]

then optionally (and only if <ITEMTYPE> has been specified):
<TRACK>
<NUM>nnn nnn is the track number within the item

then optionally:
<PLAY>

<ITEMTYPE> may currently be <TRACK>, <MEDIA> or <SPLIST>. If it is specified, then it is an
error for it not to match the type of the item referenced by id.

If <TRACK><NUM>tracknum is included and <ITEMTYPE> has been specified as either
<MEDIA> or <SPLIST>, then that track within the album or playlist, respectively, will be selected.
This assumes that the track is available. If not, the next available one (if any) will be cued instead,
where `next’ will include wrapping round to the first available track if REPEAT mode is set and no
higher-numbered tracks are available. If RANDOM mode is set then tracknum is the index of the
track within the shuffled set of tracks. (See Set play flags on page 43 for discussion of these
modes.)

Including this option is theoretically equivalent to a $SELECT$<ITEMTYPE><ID>id request
followed by a $SELECT$<TRACK><NUM>nnn request (see Error! Not a valid bookmark self-
reference. on page 48) but has the advantage of being atomic. It removes the possibility that the
server, if already in PLAY mode, will start playing the first track within the item before it skips to
the requested item.

If <PLAY> is present in the request the server will start playing the selected item. Otherwise,
the server’s play mode is preserved: it will start playing the item only if it was already in PLAY
mode.

The use of all the options added at version 1.02 has the additional benefit that it allows one
request to achieve what would have required three separate requests in earlier versions of the
Protocol.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 49 of 201

Reply

Command: ACK
Parameters: <OK>

<ID>id id is a track-id
<NUM>nnn nnn is a positive integer
<ORIG> nnn nnn is a positive integer
<TOTAL>nnn nnn is a positive integer
<LEN>hhhh:mm: ss
<TYPE>type type is TRACK,MEDIA,SPLIST or DPLIST

The <TOTAL> parameter gives the total number of tracks in the media unit identified by the ID.
(Of course, for a single track, this will be 1.)

<LEN> gives the total playout time.

<ORIG> gives the loaded track’s original (<ORIG>) track number.

<NUM> gives that loaded track’s track number in the prevailing track play order (which can be
randomised).

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 50 of 201

Select media by media number

The media are initially numbered on the server from 1 onwards. Once media are assigned a
"slot", the number of that slot will not change until the media are deleted, regardless of whether
other media have subsequently been deleted or added.

Whether or not slots (media numbers) from deleted media can ever be reused is a configurable
option.

The media number 0 is reserved and has a special meaning: the first media still extant on the
server. So, for example, if media numbers 1-10 have been deleted at some point, selecting
media number 1 will fail (no media available), but selecting media number 0 will actually cause
media number 11 (the first media which the server still has) to be loaded.

Request

Command: $SELECT$
Parameters: <MEDIA>

then either:
<SKIP>sss To inc/decrement by sss media; default 1

or:
<NUM>nnn To select media number nnn

The sss argument is a signed number; nnn is unsigned.

This causes the server to increment, decrement or select a specific medium from the total list of
media available on the server. <SKIP> and <NUM> are mutually exclusive: the command may
use either exactly one, or none, of them.

If a value is supplied to <SKIP>, it must be an integer (it may be negative); if it is not, the default
is 1. If a value of 0 is given to the parameter, the server will not change its state, but simply report
the current media. An attempt to <SKIP> beyond the last media, or to before the first, will result
in a warning and no change in state.

The effect of <SKIP> is to skip the given number of media that are still on the machine. So, if
media 3-4 and 6-8 have been deleted, and you are currently playing media number 2, using
<SKIP>1 will take you to media number 5; alternatively, <SKIP>2 would have taken you to media
number 9.

The value for <NUM> must be a positive integer. Note that media are numbered from 1, not from
0, and 0 is reserved to mean "the first recorded medium still on the server". If you select a media
number that no longer exists, there will be no effect, and you will get a warning that tells you the
next and previous available media, relative to the number you gave.

Reply

Command: ACK
Parameters: <OK>

then either:
<ID>id id is a media-id
<NUM>nnn num is the media number
<TOTAL>nnn total is the total number of media available

or:

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 51 of 201

(For a $SELECT$<SKIP> to beyond or before the range of loaded media)
<WARNING>
<MESSAGE>81Media unavailable
 <ID>id
<NUM>nnn
<TOTAL>nnn

(The <TOTAL> parameter in the reply gives the total number of media available;
the <NUM> parameter gives the currently selected media number.)

or:
(For a $SELECT$<NUM> to a non-existent media number, or an empty slot)
<WARNING>
<MESSAGE>81Media unavailable
<PREV>ppp
<NEXT>nnn

(where ppp can be 0, to mean no previous media, and nnn can be 0, to mean no
more media after the number given. If either is non-zero, it indicates the next
available media number in that direction relative to the one requested.)

or:
<ERROR>
<MESSAGE>XXmessage

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 52 of 201

Select track within media or playlist by track number

Request

Command: $SELECT$
Parameters: <TRACK> Mandatory

then either:
<SKIP>nnn To inc/decrement by nnn tracks; default 1

or:
<NUM>nnn To select track number nnn in the media or list

This causes the server to increment, decrement or select a specific track number. This may be
within a media item or a playlist, depending upon what it is playing. <SKIP> and <NUM> are
mutually exclusive: the command may use either exactly one, or none, of them.

What is meant by “track number” in this respect is the number in the playing order. That is to say:
if you have RANDOM mode selected, the “track number” here refers to the current randomised
playing order, not to the original order of tracks in the media or playlist.

If a value is supplied to <SKIP>, it must be an integer (it may be negative); if it is not, the default
is 1. If a value of 0 is given to the parameter, the server will not change its state, but simply report
the current track.

If the server is not in repeat mode (see Set play flags on page 43), an attempt to skip beyond the
last track or to before the first will result in a warning and no change in state.

If it is in repeat mode, skipping “wraps around” in either direction. That is to say, a skip to the
track before the first will play the final track in the list; a skip to the track after the last in the list will
play the first.

The value for <NUM> must be a positive integer. Note that tracks are numbered on media and
playlists from 1, not from 0.

Reply

Command: ACK
Parameters: <OK>

then either:
<ID>nnn nnn is a track-id
<NUM>nnn nnn is a positive integer
<ORIG>nnn nnn is a positive integer
<TOTAL>nnn nnn is a positive integer
<LEN>hhhh:mm:ss

or:
<WARNING>
<MESSAGE>XXmessage
<NUM>nnn nnn is a positive integer
<ORIG>nnn nnn is a positive integer
<TOTAL>nnn nnn is a positive integer

or:
<ERROR>
<MESSAGE>XXmessage

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 53 of 201

On success, or upon a warning, the server reports the (new) track number playing (<NUM>), its
original position in the media or playlist (<ORIG>), its track-id (<ID>), the total number of tracks in
the current media or playlist (<TOTAL>), and the track’s running time (<LEN>).
It is worth pointing out the difference between <NUM> and <ORIG>. <NUM> gives the track
number in the current playing order (which may be randomised); <ORIG> gives the original track
number in the track’s media or playlist (depending upon what has been selected previously using,
for example, $SELECT$<ID>).

<COMPR> gives the track’s compression type.

If the server does not have a media file corresponding to that track, it will find the next available
track for which it does have a file.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 54 of 201

Status and reporting

Commands in this section are all concerned with requesting information on some aspect of the
server’s current state.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 55 of 201

Operating mode

Request

Command: $STATUS$
Parameters: <MODE>

Reply

Command: ACK
Parameters: <OK>

<MODE>mode mode is PLAY, PAUSE or STOP

[Introduced in Protocol version 1.02]
<DONE> Only if playout has reached the end of the

selected item

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 56 of 201

Play status

Request

Command: $STATUS$
Parameters: <PLAY>

This requests information about the current enclosing item (be it playlist, media or singleton track)
selected on the server.

Reply

Command: ACK
Parameters: <OK>

<PLAY>
<TYPE>type for type, see below

For type=UNSET:

No further parameters.

For type=TRACK:

<ID>id id is an item id
<LEN>hhhh:mm:ss the length of the track
<NAME>name name is a string
<ARTIST>artist artist is a string

For type=MEDIA:

<ID>id id is an item id
<TOTAL>nnn nnn is a positive integer
<LEN>hhhh:mm:ss the total length of the media
<NAME>name name is a string
<ARTIST>artist artist is a string

For type=SPLIST:

<ID>id id is an item id
<TOTAL>nnn nnn is a positive integer
<LEN>hhhh:mm:ss the total length of the playlist
<NAME>name name is a string

For type=DPLIST:

Not yet supported; watch this space!

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 57 of 201

Play flags

Request

Command: $STATUS$
Parameters: <PLAY>

<FLAG>

Reply

Command: ACK
Parameters: <OK>

<PLAY>
<FLAG>
<RANDOM>onoff onoff is either ON or OFF
<REPEAT>onoff onoff is either ON or OFF

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 58 of 201

Track status

Request

Command: $STATUS$
Parameter: <TRACK>

This requests information about the current track selected on the playout destination to which the
command has been sent.

Reply

Command: ACK
Parameters: <OK>

<ID>id id is an item id
<NUM>nnn nnn is a positive integer
<ORIG>nnn nnn is a positive integer
<LEN>hhhh:mm:ss the length of the track
<NAME>name name is a string
<ARTIST>artist artist is a string

The <NUM> parameter gives the play order number within the enclosing item (playlist or disc). If
the track is being played as a singleton, this is always 1.

As of version 1.02 of the Protocol there are alternatives to this request for controllers with input
buffers of less than 1024 bytes (see page 157).

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 59 of 201

Track position

Request

Command: $STATUS$
Parameters: <POS>

This requests the current play position of the currently-selected track.

Reply

Command: ACK
Parameters: <OK>

<POS>hhhh:mm:ss
<MSECS>MMM

The <MSECS> parameter gives the fractional part in milliseconds.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 60 of 201

Track encoding types

There are a number of ways of encoding audio and video data (to name but two types). The
tracks stored on the server are sometimes stored uncompressed; sometimes compressed. Each
type of encoding has a unique ID. This command allows a controller to discover the encoding IDs
for a given type of track.

Request

Command: $STATUS$
Parameters: <COMPR>tracktype tracktype is AUDIO or VIDEO.

Reply

Command: ACK
Parameters: <OK>

<COMPR>tracktype

followed by zero or more of the following:
<ID>compr-id compr-id is a non-negative integer

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 61 of 201

Details of a track encoding type

This command allows the controller to find out exactly what a given compression ID represents.

Request

Command: $STATUS$
Parameters: <COMPR>

<ID>compr-id As obtained from the command above.

Reply

Command: ACK
Parameters: <OK>

<COMPR>
<ID>compr-id
<TYPE>type type is a name for the compression type
<BPS>bps bps is compressed bytes per second
<BITS>bits bits is bits per channel per sample
<CHANS>chans chans is number of channels
<FREQ>freq freq is samples per second (=Hz)

The type argument is just an arbitrary string that describes the encoding type in a reasonably
concise and user-friendly way. It has no other significance.

Not all compression formats generate a reliable number of compressed bytes per second, so the
bps argument can only be regarded as a rough average for “normal” data. In many compression
formats, data which are “noisy” compress far less well than those that are mathematically more
regular, and therefore more predictable and compressible.

The numeric arguments are integers: that is to say, any fractional part is dropped.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 62 of 201

Free space on the server

Request

Command: $STATUS$
Parameters: <FREE>

Reply

Command: ACK
Parameters: <OK>

<FREE>freeK freeK is total free space in Kb.
<MAX>maxK maxK is largest free area in Kb.

These may seem slightly contradictory, but bear in mind that the server may have several disc
units (and/or disc partitions) for media storage. If, for example, it had four discs, there could be
8000Kb free in total, but only 2000Kb on any one partition – and thus 2000K would be the
greatest volume of data that could be recorded in any one file.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 63 of 201

Free space on the server in terms of playback time

[Request (and reply) introduced in Protocol version 1.02]

The $STATUS$<FREE> request reports the free space in kilobytes. It is possible to use that
information together with the details of the various types of encoding (c.f. Track encoding types, p
60) to determine the amount of space left on the server in terms of playback time, assuming a
particular encoding is used for further recording. For convenience and standardisation across
controllers, it is now recommended that the following request be used instead. Note that the result
takes into account reservation of some space for server operations.

Request

Command: $STATUS$
Parameters: <FREE>

<COMPR>
<ID>compr-id compr-id must be one of the values resulting

from a $STATUS$<COMPR>tracktype request.

Reply

Command: ACK
Parameters: <OK>

<FREE>
<COMPR>
<ID>compr-id
<LEN>space-as-playing-time The value is in the format hhhh:mm:ss.
<MESSAGE>message Optional: only if extra information available

Currently the only message is `FULL’ , which indicates that subsequent attempts to record are
unlikely to succeed until space is freed up on the server.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 64 of 201

Status of online lookups

Request

Command: $STATUS$
Parameters: <LOOKUP>

Reply

Command: ACK
Parameters: <OK>

<LOOKUP>status See below

The status argument is one of the following:

ACTIVE – there is a lookup in progress;
DONE – there is no lookup in progress or needed at present;
QUEUE – there is no lookup in progress, but one or more items await lookup.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 65 of 201

Status of underruns

This command should be sent to a playout destination, not to server.

Request

Command: $STATUS$
Parameters: <UNDERRUN>

Reply

Command: ACK
Parameters: <OK>

<UNDERRUN>
<TOTAL>num Total number of underruns since boot
<TRACK>num Number of underruns during this track

<DROP>
<TOTAL>num Total number of drops since boot
<TRACK>num Number of drops during this track.

<TIME>
<TOTAL>num Total playout time (secs) since boot
<TRACK>num Seconds played of this track.

Note that any num argument may be –1, which means that the information is not available to the
server (for example, the low-level driver does not support the reporting of that type of event).

An underrun is an incident where the low-level driver (the software that operates the audio or
video output hardware) was expecting data, but they were not available. Underruns are usually
noticeable by a user.

A drop is a contiguous sequence of one or more underruns. A drop is terminated by successful
playout, or the stopping of playout, on the destination. For example, if there were three underrun
events in a row, followed by successful playout, followed by a sequence of another four
underruns, this would constitute only two drops.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 66 of 201

Update notifications

The server can be made to notify controllers of its current state, or of changes in its state, without
having to be prompted every time. These messages are known as updates. An update
message can be triggered for one of two reasons::

Event-triggered – something on the server changes state;
Time-triggered – these messages are sent at regular intervals regardless of any change of state.

These two types of update are independent of each other. If you request both for a given update
type, you will get both: an immediate update upon a change of state, plus a time-triggered update
at the programmed interval.

There are many different types of update. By default, the server does not send any type of
update until it is requested to do so. It is up to a controller to switch on any given update type,
and to switch it off when it is no longer needed. Not all update types support time-triggered
updates.

Updates work slightly differently from normal commands. You turn on a type of update in the
same way you issue any other type of command. However, once an update type is switched on,
the controller will start to send $UPDATE$ messages as and when it is appropriate to do so.

$UPDATE$ messages are not linked to any command’s message-sequence-char.

The commands described here have three sections:
Request – the command to issue to turn an update on or off;
Reply – the immediate reply to the request;
Update – the update message, which happens at some other time.

Development note: at present, and for the immediate future, if you request timed updates –
regardless of the frequency you request – you will get them every 5-6 seconds. In other words, a
non-zero value for the update frequency will give 5-6 second updates, and a zero value will stop
timed updates.

VERY strong recommendation: turn on only those updates that you actually need at any given
time. Every update that is switched on (most particularly timed updates) causes the server to
perform actions that may slow its operation. An overburden of housekeeping work, such as
serving large numbers of unnecessary updates, could lead to the point where the server cannot
deliver streaming media to destinations in time, leading to playout glitches or worse.

So, for example, turn on track and mode updates for only the destination your controller is
presently displaying to the user. If the user elects to change playout destination, turn off the
updates for the old destination, turn them on for the new one, and use $STATUS$ commands to
get the up-to-the-moment information on what’s playing in the new zone.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 67 of 201

Play-state update

This request should be sent only to server.

Request

Command: $STATUS$
Parameters: <UPDATE>

then: <EVERY>nnnn nnnn is zero or a positive integer
and/or: <TRACK>onoff onoff is ON or OFF
and/or: <MODE>onoff onoff is ON or OFF

The <EVERY> parameter requests the respondent to update the sender on the track ID and
position on a timed basis. If the value is zero, timed update is to be stopped immediately;
otherwise it gives a required reporting frequency, in 0.1s quanta. If the command is accepted, the
respondent will update the sender continuously during play, or once every ten seconds whilst
paused or stopped. If the server cannot send as often as requested, it will do so as frequently as
it can manage.

Strong recommendation: do not request updates more than once per second. (But see
comments at the start of this section.)

The <TRACK> parameter requests that updates at the end of every track (or the beginning of the
first) be turned either ON or OFF (default: OFF). TRACK updates are also sent if a skip within a
track is performed.

The <MODE> parameter requests that updates on change of mode (between PLAY, PAUSE and
STOP) be turned either ON or OFF (default: OFF).

Note that the <TRACK> and <MODE> parameters may be supplied singly or together (in that
order) in the absence of an <EVERY> parameter. If this is done, the request will not affect the
sending of timed play-state updates, just the sending of TRACK and/or MODE updates as
requested. The format of the update is the same in all cases; the only difference is in the
triggering of updates.

Reply

This is the immediate response, on success:

Command ACK
Parameters: <OK>

Update

If the request succeeded, you will receive, at the intervals described above, one of the following
(which does not carry a reply sequence character):

Command: $UPDATE$
Parameters: <MODE>mode mode is PLAY, PAUSE or STOP

then: <ID>id id is a track ID
<POS>hhhh:mm:ss pos is the track position
<MSECS>msecs msecs is milliseconds into track position above

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 68 of 201

<NUM>num num is the track number in current play order
<ORIG>num num is track number in the original play order

[Introduced in Protocol version 1.02]
<DONE> only if playout has stopped at the end of the

selected item

or: <UNSET>

or: <ERROR>XXmessage (note that this follows $UPDATE$, not ACK)

This is an unsolicited packet, and does not require its respondent to acknowledge it with an
ACK. If it has been triggered at the end of a track, or on a transition to STOP mode, it
indicates details of the track newly selected, not the outgoing track.

The <UNSET> parameter indicates that the server has an empty state, with no playlist or disc
selected.

The <ERROR> response indicates a continuing problem, which will need user intervention.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 69 of 201

Record state update

This request should be sent only to server.

Updates are sent on a timed basis and/or on a change of recording state.

You can set this update for a given type of recording source, but not for individual sources. As at
1.00, only the <CD> source is defined.

Request

Command: $STATUS$
Parameters: <UPDATE>

<SOURCE> At 1.00, the only defined SOURCE is CD
<RECORD>[onoff] onoff is optional, and is either ON or OFF
<EVERY>nnn Optional; nnn is the interval in 0.1s units.

If you supply ON or OFF as argument to the mandatory <RECORD> parameter, you turn on or off
state-triggered updates.

If you use the optional <EVERY> argument, you turn on (at the requested non-zero interval, but
see the Development note at the start of the section) or off (if you supply 0) timed record-state
updates. Note that you will get a timed update for every source of the given type.

Strong recommendation: don’t use the <EVERY> version unless you know for certain that there
are very few sources of the given type. If your controller happens to be attached to a server with,
say, 20 CD units, you will get 20 updates every interval, which could put a severe load on the
server.

Reply

If successful:

Command: ACK
Parameters: <OK>

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 70 of 201

Update

Command: $UPDATE$
Parameters: <SOURCE>sourceno

<RECORD>
followed by:

<NONE> No recording in progress on this source
or:

<LEFT>secs secs estimated to end of recording sequence
(in ripping seconds). Can be –1, if the server
cannot yet make an estimate.

<TRACK>
<INDEX>ix ix is the 1-based track index within the media
<ID>trackid trackid is the track’s ID.
<TIME>secs secs is the total track playout length
<LEFT>secs secs is the amount of the track still unrecorded

(in playout seconds, not ripping seconds)
<NUM>num num is the its number in the recording sequence
<TOTAL>total total is the total number of tracks to record

<MEDIA>
<ID>mediaid mediaid is the media’s ID (can be zero).
<TIME>secs secs is the media’s total playout length
<LEFT>secs secs is total time on the media still unrecorded.

(in playout seconds, not ripping seconds)

[Introduced in Protocol version 1.02]
<MEDIA>
<NUM>medianum medianum is the media’s media number

(c.f. `Select media by media number’, p 50).

The <LEFT> and <TIME> parameters need a little explanation, as they can be confusing.

Unless the server is extremely heavily loaded, or there are disc-related features that are slowing
the ripping process, ripping happens much more quickly than the real-time length of the CD. In
other words, a CD whose total playout time might be 78 minutes could be fully ripped in only 10-
20 minutes.

The initial <LEFT> parameter gives the server’s estimated time to completion of the ripping
process. This is calculated by averaging its current ripping rate, and applying that to the amount
of data left to record. It may be given as –1, in which case the server has not had enough ripping
time yet to make an accurate estimate. The point to emphasise is that this parameter predicts the
amount of time the user will have to wait before the ripping is complete.

The <LEFT> parameter soon after <TRACK> gives the number of seconds still unrecorded for
the track currently ripping – but this is in terms of the track’s playout time, not ripping time. The
total playout time for the track is given by the <TIME> parameter.

The <LEFT> and <TIME> parameters soon after <MEDIA> have the same meanings as their
corresponding parameters after <TRACK>, but refer to the media as a whole.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 71 of 201

Disc tray update

This request should be sent only to server.

Updates are sent whenever a ripping source disc unit (at present, CDs only) ejects or loads a
disc.

Request

Command: $STATUS$
Parameters: <UPDATE>

<DISCTYPE>
<TRAY>onoff onoff is either ON or OFF

Note that this is requested for a whole DISCTYPE class (at present, only CD), not for individual
drives in that class. The controller will be notified whenever any drive in that class opens or
closes its tray. (Or ejects or loads a disc, if it’s a slot-loader.)

Tray updates are always event-triggered. There is no time-triggered option.

Reply

Command: ACK
Parameters: <OK>

Update

Command: $UPDATE$
Parameters: <DISCTYPE>discnum

<TRAY>openclose openclose is either OPEN or CLOSE

NOTE: at present, these updates are only issued when the tray is opened or closed under
software control. If the user has an eject button and uses it, or if the user closes the tray
manually, an update may not happen. You should therefore note this information if you receive it,
but not rely upon doing so.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 72 of 201

Media availability update

This request should be sent only to server.

Updates are sent when new media become available (or unavailable) for recording on any of the
ripping source drives (at present, only CDs).

Request

Command: $STATUS$
Parameters: <UPDATE>

<DISCTYPE>
<MEDIA>onoff onoff is either ON or OFF

Note that this is requested for a whole DISCTYPE class (at present, only CD), not for individual
drives in that class. The controller will be notified whenever media become available (or
unavailable) for any drive in that class.

Media availability updates are always event-triggered. There is no time-triggered option.

Reply

Command: ACK
Parameters: <OK>

Update

Command: $UPDATE$
Parameters: <DISCTYPE>discnum

then if media became available:
<MEDIA>

[Introduced in Protocol version 1.02]

otherwise (media became unavailable):
<NONE>

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 73 of 201

On/offline update

This request should be sent only to server.

Updates are sent when the online status of the server changes. As of Protocol version 1.02,
updates will also be sent while the server is going online as it passes through each stage of each
connection attempt.

Request

Command: $STATUS$
Parameters: <UPDATE>

<ONLINE>onoff onoff is either ON or OFF

Reply

Command: ACK
Parameters: <OK>

Update

Command: $UPDATE$
Parameters: <ONLINE>status See below

[Introduced in Protocol version 1.02]
then if the server is online:

<USER><COUNT>num-users See below

then if the server is attempting to go online or has just succeeded:
<TRY>
<NUM>try-num try-num is in the range 1 to total-tries
<TOTAL>total-tries
<STATUS>try-state See below

then if the above <TRY> information is present and addition information is available:
<INFO>IXXdetail See below

The status argument is one of the following:

• YES (the server is online);
• NO (the server is not online, and is not attempting to connect);
• UNKNOWN (the online status is unknown at present);
• CONNECTING (the server is in the process of trying to connect);
• DISCONNECTING (the server is in the process of trying to disconnect).

num-users is the number of entities which have requested that the server go online (using the
current network interface) and not yet countermanded that request.

The try-state is the state of the current connection attempt, as reported by the network interface.
The states:

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 74 of 201

• `connecting’ (the initial state during a connection attempt) and
• `connected’,
• `failed’ and
• `aborted’ (one of which will be the final state of a connection attempt)

are common to all types of network interface. During a dialup connection attempt, the
intermediate states: `initialising’, `dialling’ and `authenticating’ will be reported in turn, if and when
these stages are reached. No intermediate states are currently reported by the ethernet interface
but this may change. It should be assumed that, while existing states will not be withdrawn,
additional states may be added for existing network interface types or introduced by new ones.

The standard use of the <INFO> parameter is to allow a network interface to convey the reason
for failure of a connection attempt. The components of IXXdetail are :-

• I : a single hex digit indicating the network interface involved (currently `0’ for the first
ethernet interface or `1’ for the first dialup modem interface);

• XX : an error detail code (in the form of two hex digits) which is specific to the type of
network interface and

• detail: a textual description of the type of failure.

The error detail codes are defined in the section `Networking error detail codes’ (p 126) but the
detail code `00’ is reserved across all types of network interface to mean that no error has
occurred. Network interfaces may thus make use of the <INFO> parameter to report additional
detail about stages of a connection, provided that the detail code is `00’. Currently the dialup
modem interface uses this approach to report the phone number being dialled when its try-state
is `dialling’.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 75 of 201

TRACKDB change update

This request should be sent only to server.

Updates are sent when TRACKDB is changed for some reason.

Request

Command: $STATUS$
Parameters: <UPDATE>

<TRACKDB>onoff onoff is either ON or OFF

Reply

Command: ACK
Parameters: <OK>

Update

Command: $UPDATE$
Parameters: <TRACKDB>reason See below

Optionally followed by:
<MEDIA>
<ID>mediaid

Optionally followed by:
<TRACK>
<ID>trackid

The reason argument is one of the following:

• NEW_CD – this is deprecated, but should be supported by 1.00 clients. It is exactly
synonymous with MEDIA (see below);

• MEDIA – new media have been added to the TRACKDB. This may be a fully-described
album (for example), or simply a previously-encountered disc inserted into the server.
This will replace NEW_CD;

• RECORD – the recording of media has caused a change to the TRACKDB;
• LOOKUP – an online lookup has caused TRACKDB changes;
• DELETE – a track or media deletion has changed the TRACKDB;
• ALTER – existing information on a track or media has been changed. This could be

anything: artist name, track name, media name and so on;
• RESET – someone has changed the database to the point where controllers should

make no further assumptions about the database’s contents: all cached information
should be abandoned and reloaded.

If the RCP is aware of the identity of a single track and/or media whose change has triggered this
update, it will append <MEDIA><ID> and/or <TRACK><ID> to the packet. Sometimes, things can
change in the database of which the RCP has no exact knowledge: in this case it can tell only
that a change has occurred.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 76 of 201

Controllers receiving these updates should therefore not rely upon the presence of <MEDIA><ID>
or <TRACK><ID>, although, if present, they will be accurate.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 77 of 201

PLAYLISTDB change update

This request should be sent only to server.

Updates are sent when something changes the PLAYLISTDB: in other words, when a playlist is
created, deleted or modified.

Request

Command: $STATUS$
Parameters: <UPDATE>

<PLAYLISTDB>onoff onoff is either ON or OFF

Reply

Command: ACK
Parameters: <OK>

Update

Command: $UPDATE$
Parameters: <PLAYLISTDB>

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 78 of 201

Play flags update

This request should only be sent to playout destinations, and never to server.

Updates are sent when the play flags for the playout destination in question are changed.

Request

Command: $STATUS$
Parameters: <UPDATE>

<PLAY>
<FLAG>onoff onoff is either ON or OFF

Reply

Command: ACK
Parameters: <OK>

Update

Command: $UPDATE$
Parameters: <PLAY>

<FLAG>
<RANDOM>onoff onoff is either ON or OFF
<REPEAT>onoff onoff is either ON or OFF

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 79 of 201

Online lookups update

This request should be sent only to server.

Updates are sent when a lookup succeeds, is aborted, or fails completely after a number of
retries (e.g. the Internet connection or the online media information database are unreachable).

Request

Command: $STATUS$
Parameters: <UPDATE>

<LOOKUP>onoff onoff is either ON or OFF
Reply

Command: ACK
Parameters: <OK>

Update

Command: $UPDATE$
Parameters: <LOOKUP>status See below

The status argument is one of the following:

• ACTIVE (lookup is in progress);
• DONE (lookup complete);
• QUEUE (items are awaiting lookup);
• ERROR (a problem has occurred; detailed status information cannot be obtained).

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 80 of 201

Underrun update

This request should only be sent to playout destinations, and never to server.

Updates are sent when audio playout for the playout destination in question causes underruns.

Request

Command: $STATUS$
Parameters: <UPDATE>

<UNDERRUN>onoff onoff is either ON or OFF

Reply

Command: ACK
Parameters: <OK>

Update

Command: $UPDATE$
Parameters: <UNDERRUN>

<TOTAL>nnn nnn is total number of underruns since last boot
<TRACK>nnn nnn is number of underruns during current track

<DROP>
<TOTAL>nnn nnn is total number of drops since last boot
<TRACK>nnn nnn is number of drops during current track

<TIME>
<TOTAL>nnn nnn is total no. of seconds playout since boot
<TRACK>nnn nnn is no. of seconds played of current track

Note that any of the nnn figures above can be –1, if that information is not available (for example,
if the playout destination does not support underrun or drop reporting).

An underrun occurs when the server cannot supply data quickly enough to supply the
destination. This usually occurs when the server is under heavy load. Each underrun is one
such event reported by the destination hardware drivers. It may mean only one sample lost; it
may mean a whole buffer’s-worth.

A drop is a contiguous sequence of one or more underruns. That is to say, if the low-level drivers
report drops three times in a row, this would constitute one drop. If playout was re-established,
and the drivers started reporting underruns again, this would constitute another drop.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 81 of 201

Cache close update

This request should be sent only to server.

Updates are sent when a cache is invalidated. The cache is implicitly closed, and no further
action is needed by a controller (except perhaps reopening and resynchronising with the cache in
question).

Request

Command: $STATUS$
Parameters: <UPDATE>

<CACHE>
<CLOSE>onoff onoff is either ON or OFF

Reply

Command: ACK
Parameters: <OK>

Update

Command: $UPDATE$
Parameters: <CACHE>cache See below

<CLOSE>

The cache argument is one of the following:

• MEDIA – this means that the MEDIA, GENREMEDIA and ARTISTMEDIA caches are now
invalid;

• ARTIST – this means that the MEDIA and ARTISTMEDIA caches are now invalid;
• GENRE – this means that the GENRE and GENREMEDIA caches are now invalid;
• PLAYLIST – this means that the PLAYLIST cache is now invalid.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 82 of 201

Configuration update

[Request (and reply and update) introduced in Protocol version 1.02]

This request may be sent to any destination to which configuration requests may be sent.

Updates are sent when a configuration setting is changed and will have as source address the
destination to which the request which changed the setting was sent.

Request

Command: $STATUS$
Parameters: <UPDATE>

<CONFIG>onoff onoff is either ON or OFF

Reply

Command: ACK
Parameters: <OK>

Update

Command: $UPDATE$
Parameters: <CONFIG>category See below

<ITEM>item See below
<HAS>value See below

The source address and the category and item arguments together uniquely identity a
configuration setting within the overall system. This hierarchical addressing system for
configuration settings is described in more detail in Configuring the server (p 149). The value
argument is the new value to which the configuration setting has been changed.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 83 of 201

Power mode update

[Request (and reply and update) introduced in Protocol version 1.02]

This request should be sent to server.

Updates are sent when the power mode changes (see Querying and setting the power mode
on page 157).

Request

Command: $STATUS$
Parameters: <UPDATE>

<POWER>
<MODE>onoff onoff is either ON or OFF

Reply

Command: ACK
Parameters: <OK>

Update

Command: $UPDATE$
Parameters: <POWER>

<MODE>power-mode power-mode may be RUN, STANDBY,
RESTART or SHUTDOWN

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 84 of 201

Simple search facilities

The user may want, through the controller, to browse the databases on the server, and maybe
even to create playlists. These interfaces are intended to make this easy.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 85 of 201

The type of an ID

This allows a controller to find out what an item ID represents. Note that this applies only to
media, track and playlist IDs.

Request

Command: $SEARCH$
Parameters: <INFO>
<ID>item-id

Reply

Command: ACK
Parameters: <OK>

<INFO>
<ID>item-id
<TYPE>type See below.
<NAME>name This could be empty

The type will be one of the following:

• TRACK – a track;
• MEDIA – one of the media;
• SPLIST – a static playlist;
• DPLIST – a dynamic playlist.

This command can also be used to determine whether an item-id is valid. If it is not. you will
receive “ACK<ERROR><MESSAGE>13No such ID” instead of the ACK<OK> message
above.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 86 of 201

Track details

Request

Command: $SEARCH$
Parameters: <TRACK>

<ID>track-id track-id is optional, <ID> is not
<FULL> optional

This command can be sent to server or to a playout destination.

The <ID> parameter is mandatory.

If the command is sent to server, track-id must be supplied.

If it is sent to a playout destination, track-id is optional: if absent, it is implicitly the current media
selection on that playout destination. If the playout destination does not have a track currently
selected, an error will be generated.

The <FULL> parameter causes more detailed information to be supplied.

Reply

Command: ACK
Parameters: <OK>

<ID>track-id
<TYPE>track-type
<LEN>track-len
<COMPR>compr Optional: only if information available
<NAME>track-name
<ARTIST>track-artist
<MEDIA><ID>media-id

If the <FULL> parameter was given, then the following also follow, and refer to the track’s
media:

<LEN>media-len
<NUM>track-num
<TOTAL>media-tracks-total
<NAME>media-name
<ARTIST>media-artist
<GENRE>media-genre

track-id is an opaque designation that the server gives the current track.
track-type is AUDIO or VIDEO.
track-len is the track’s length, in the format hhhh:mm:ss. This may be 0000:00:00 if the track has
not yet been recorded onto the server.
compr is the track’s encoding type: a non-negative integer.
track-name is an arbitrary string giving the track’s name
track-artist is an arbitrary string naming the artist of the track.
media-id is an opaque designation that the server gives the track’s media. This can be 0,
meaning that the track has no media associations.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 87 of 201

media-len is the total playing time of the media, in the format hhhh:mm:ss.
track-num gives the track’s index within its source media, numbered from 1.
media-tracks-total gives the total number of tracks in the media.
media-name, media-artist and media-genre are arbitrary strings giving the name, artist and genre
of the media.

If the track is a member of more than one medium (at present this does not happen, but this
should not be relied upon), there will be more than one section starting <MEDIA>.

As of version 1.02 of the Protocol there are alternatives to this request for controllers with input
buffers of less than 1024 bytes (see page 157).

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 88 of 201

Basic media details (disc etc.)

Request

Command: $SEARCH$
Parameters: <MEDIA>

<ID>media-id media-id is optional, <ID> is not

This command can be sent to server or to a playout destination.

If it is sent to server, media-id must be supplied. If it is sent to a playout destination, media-id is
optional: if absent, it is implicitly the current media selection on that playout destination. If the
playout destination does not have media currently selected (the server has just booted, or a track
or playlist has been selected), an error will be generated.

Reply

Command: ACK
Parameters: <OK>

<MEDIA>
<ID>media-id
<TYPE>media-type
<TOTAL>media-total
<SOURCE>media-source
<LEN>media-len
<NAME>media-name
<ARTIST>media-artist
<GENRE>media-genre

media-id is an opaque designation that the server gives the current media.
media-type is AUDIO, VIDEO or MIXED.
media-total is the total number of tracks in the media.
media-source depends upon media-type. If media-type is AUDIO, media-source is CD, DVD, LP,
OTHER, UNKNOWN. If media-type is VIDEO, media-source is DVD, VTR, UNKNOWN.
media-len gives the total running time of the media in the format hhhh::mm:ss.
media-name is an arbitrary string naming the media (the disc, video etc.).
media-artist is an arbitrary string naming the artist of the media (which could be “Original Artists”
for a compilation album, for example).

You should not rely upon the value for media-source: it is provided for information value only.

As of version 1.02 of the Protocol there are alternatives to this request for controllers with input
buffers of less than 1024 bytes (see page 157).

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 89 of 201

Media track details

Request

Command: $SEARCH$
Parameters: <MEDIA>

<ID>id id must be provided
<TRACK>
<FROM>from
<FOR>for
<NONE> Optional

Reply

Command: ACK
Parameters: <OK>

<SEARCH>
<MEDIA>
<ID>media-id
<TRACK>
<FROM>from
<FOR>for2

Followed by’ for2’ entries of the following form:

<AT>at-val In the range from to (from + for2 – 1)
<ID>track-id
<NAME>track-name
<NONE> See below.

Followed, if this completes information for the media in question, by:

<EOF>

If the track name is not known, track-name has the content “**Unknown**” (without the quotes, of
course).

The <NONE> parameter in the per-track information is only given if: (1) the optional <NONE>
parameter was given to the original command, and; (2) if there are no track data files associated
with this entry (this can happen for tracks which have not yet been ripped).

Note that the value of for2 (in the reply) may not be the same as for (in the command), if not all
track details could be fitted into one packet.

As of version 1.02 of the Protocol there is an alternative to this request for controllers with input
buffers of less than 1024 bytes (see page 157).

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 90 of 201

Playlist details

Request

Command: $SEARCH$
Parameters: <PLAYLIST>

<ID>playlist-id

This command can be sent to server or to a playout destination.

If it is sent to server, playlist-id must be supplied. If it is sent to a playout destination, playlist-id
is optional: if absent, it is implicitly the playlist media selection on that playout destination. If the
playout destination does not have a playlist currently selected (the server has just booted, or
media or a track has been selected), an error will be generated.

Reply

Command: ACK
Parameters: <OK>

<PLAYLIST>
<ID>playlist-id
<playlist-type>
<TOTAL>playlist-total
<LEN>playlist-len
<NAME>playlist-name

playlist-id is an opaque designation that the server gives the current playlist.
playlist-type is either SPLIST (static playlist) or DPLIST (dynamic playlist)
playlist-total gives the number of tracks in the playlist1.
playlist-name is an arbitrary string naming the playlist.
playlist-len gives the total running time of the playlist1 in the format hhhh:mm:ss.

As of version 1.02 of the Protocol there are alternatives to this request for controllers with input
buffers of less than 1024 bytes (see page 157).

1 These are guaranteed valid only for static playlists. The track count and length of dynamic
playlists depend upon the tracks available on the server when the playlist is loaded. If new tracks
are added between using $SEARCH$<PLAYLIST> and selecting the playlist to play, these figures
will be inaccurate.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 91 of 201

Playlist track details

[Request (and reply) officially introduced in Protocol version 1.02]

Request

Command: $SEARCH$
Parameters: <PLAYLIST>

<ID>id id must be provided
<TRACK>
<FROM>from
<FOR>for
<NONE> optional

Reply

Command: ACK
Parameters: <OK>

<SEARCH>
<PLAYLIST>
<ID>playlist-id
<TRACK>
<FROM>from
<FOR>for2

Followed by’ for2’ entries of the following form:

<AT>at-val In the range from to (from + for2 – 1)
<ID>track-id
<NAME>track-name
<NONE> See below.

Followed, if this completes information for the playlist in question, by:

<EOF>

If the track name is not known, track-name has the content “**Unknown**” (without the quotes, of
course).

The <NONE> parameter in the per-track information is only given if: (1) the optional <NONE>
parameter was given to the original command, and; (2) if there are no track data files associated
with this entry (this can happen for tracks which have not yet been ripped).

Note that the value of for2 (in the reply) may not be the same as for (in the command), if not all
track details could be fitted into one packet.

As of version 1.02 of the Protocol there is an alternative to this request for controllers with input
buffers of less than 1024 bytes (see page 157).

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 92 of 201

The database cache

Controllers, especially the simpler ones, have a number of problems when it comes to displaying
track and album names:

• How do they know to refresh their display?
• Is it really necessary to use advanced search commands, and iterate over the whole list

generated (which could easily be, for example, over ten thousand tracks), in order to:
• Refresh their display?
• Update their locally-stored data?
• List (say) five tracks either side of the first one whose name starts with ‘P’?

The database cache has been created to help solve these problems. It should also make simpler
controllers easier to design, and minimise the amount of local data a controller must store in order
to maintain browse lists.

How to use the caches

A controller first “opens” a cache on a given list. This operation returns a marker (essentially a
throw-away handle), and alerts the RCP to take an interest in the list in question. The exact
content of the marker is unimportant: it’s essentially a “magic cookie”. The number of characters
in this marker is not fixed and may grow in the future up to a limit of 20; controllers should cope
with any length up to that limit.

The controller can then use that marker to iterate over, or search into, the list in question, for as
long as the marker remains current. If the database changes, rendering the cached information
invalid, the marker becomes invalid, and is considered closed. The controller should reopen the
list, and get a new marker.

Marker FIND operations make it reasonably easy to resynchronise with the new cache and pick
up where the controller left off. The controller should hold on to the details under the display
cursor (for example) when the cache was invalidated. It can then use the information to find the
entry (or the nearest entry, if it has disappeared) again in the new cache.

All of the $SEARCH$<CACHE> commands should be sent to destination-id server.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 93 of 201

The caches

A cache can be considered to be a table, whose rows are indexed, starting from row 1.

The columns are called elements. Each cache type has its own list of elements. These elements
contain further information related to the NAME element, which is always present.

Each cache is sorted (alphabetically, and case-independently3) upon NAME. For each unique
NAME (ignoring case) that they contain, the ARTISTMEDIA and GENREMEDIA caches are
further sorted by MEDIA.

Caches can be used as fast lookup tables, as they can be searched both on NAME and ID
(where present). They are designed to contain the additional information controller designers
often wish to have displayed alongside the names of each type of browsable information.

The caches are:

Cachename Intended purpose
MEDIA Browsing media alphabetically. Alongside the name of the media, the

browser can display the artist name and genre, and the controller can
store the media ID in order to select it for playing. There is a single
entry for each of the media on the server.

ARTIST Listing all available artists.
PLAYLIST Listing available playlists. The controller can store the playlist ID in

order to select it for playing. There is a single entry for each playlist on
the server.

GENRE Listing all available genres.
ARTISTMEDIA Browsing media alphabetically by artist name. There is an entry for

each of the media on the server, so a given artist can appear more
than once. The controller can store the media ID in order to select it for
playing.

GENREMEDIA Browsing media alphabetically by genre name. There is an entry for
each of the media on the server, so a given genre can (and almost
certainly will) appear more than once. The artist name for each media
entry is also supplied. The controller can store the media ID in order to
select it for playing.

Table x: Caches and their intended purposes

Element NAME MEDIA ID ARTIST GENRE
Cachename String string integer string string
MEDIA Media’s name - Media ID Yes Yes
ARTIST Artist’s name - - - -
PLAYLIST Playlist’s name - Playlist ID - -
GENRE Genre - - - -
ARTISTMEDIA Artist’s name Yes Media ID - -
GENREMEDIA Genre Yes Media ID Yes -

Table xi: Cache elements

3 For those developers familiar with C programming, the order is as defined by strcasecmp().

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 94 of 201

Element Contents, and intended purpose
NAME The name of the principal subject of the cache (for example, the media

name for MEDIA; the artist’s name for ARTIST, and so on).
MEDIA The name of the associated media.
ID An associated ID. Precisely whose ID is dependent upon the cache type.
ARTIST The name of the artist of the media.
GENRE The genre of the media.

Table xii: Purposes of cache elements

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 95 of 201

Opening a cache

Request

Command: $SEARCH$
Parameters: <CACHE>

<OPEN>cachename

Reply

Command: ACK
Parameters: <OK>

<SEARCH>
<CACHE>
<OPEN>cachename
<MARKER>marker marker may be up to 20 characters long
<COUNT>rrr

Once the list has been opened, the RCP has the option of maintaining a cache upon it. The
marker remains valid until closed (see later), or the cache becomes invalid. The <COUNT>
parameter in the reply gives the number of items in the cache list.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 96 of 201

Listing a cache

Request

Command: $SEARCH$
Parameters: <CACHE>

<LIST>
<MARKER>marker See below
<FROM>fff Optional
<FOR>rrr Optional

Reply

Command: ACK
Parameters:

Either:
<ERROR>
<MESSAGE>16Cache marker no longer valid

Or the following:
<OK>
<SEARCH>
<CACHE>
<LIST>
<MARKER>marker
<FROM>fff
<FOR>nnn Note – nnn may be less than rrr above

Followed by nnn entries of the following form:

<AT>xxx
<NAME>name
<MEDIA>medianame Optional
<ID>id Optional
<ARTIST>artist Optional
<GENRE>genre Optional

After which there may be:

<EOF> Optional

The marker value sent in the request must be a marker returned in the reply to a previous cache
open request. In the reply, the <NAME> entry is always present: however, which (if any) of <ID>,
<ARTIST>, <GENRE> and <MEDIA> are also present is dependent upon the list identified by the
marker. Different lists expose different fields.

If the list is successful, the reply may not return as many entries as requested. This may be for
one of two reasons: either they could not all be fitted into the packet length, or there are simply
not that many left (this is not an error).

If, and only if, the reply gives all the remaining entries, up to the end of the list, it will be
terminated with <EOF>.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 97 of 201

If the error occurs, the marker should be considered invalid, and closed. The controller does not
need to (and shouldn’t) close it.

As of version 1.02 of the Protocol there is an alternative to this request for controllers with input
buffers of less than 1024 bytes (see Retrieving a single field from a single database cache
item on page 192).

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 98 of 201

Searching within a cache’s ID fields (for those caches that support an ID)

Request

Command: $SEARCH$
Parameters: <CACHE>

<FIND>
<MARKER>marker
<ID>id

Reply

Command: ACK
Parameters:

Either:
<ERROR>
<MESSAGE>16Cache marker no longer valid

Or the following:
<OK>
<SEARCH>
<CACHE>
<FIND>
<MARKER>marker
<ID>id

Followed by either:
<NONE>

or:
<FROM>fff

This searches the ID field for the list in question (if it has one; if it does not, this is an error).

If the command succeeds, it returns either <NONE> (meaning that no entries have that ID), or
<FROM>fff, which gives the index of the item in the list matching that ID. The controller can use
the $SEARCH$<CACHE><LIST> command to obtain the corresponding name.

Note that not all lists may support IDs. Initially, the ARTIST list will not, for instance.

The error has the same meaning as for the $SEARCH$<CACHE><LIST> command.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 99 of 201

Searching within a cache’s NAME fields by matching a substring

Request

Command: $SEARCH$
Parameters: <CACHE>

<FIND>
<MARKER>marker
<START>str
<PREV> Optional; may not be used with <NEXT>
<NEXT> Optional; may not be used with <PREV>
<FOR> Optional

Reply

Command: ACK
Parameters:

Either:
<ERROR>
<MESSAGE>16Cache marker no longer valid

Or the following:
<OK>
<SEARCH>
<CACHE>
<FIND>
<MARKER>marker
<START>str
<PREV> Only if given in the command
<NEXT> Only if given in the command

Followed by either:
<NONE>

or:
<FROM>fff
<FOR>nnn Only if <FOR>given in the command

This searches the NAME field for the list in question.

The <START> parameter introduces a case-insensitive initial substring.

Normally, the search is exact: if an entry cannot be found to match the criteria, the response is
<NONE>. The controller can use the optional <PREV> or <NEXT> parameters to change this
behaviour, if there is no exact match. If one of these is set, the response will be either the
nearest match in that direction, if there are any entries in that direction, or <NONE> only if there
are no entries at all in the given direction.

Note that this search finds the first entry (the lowest-sorting) that matches (or the nearest entry if
<PREV> or <NEXT> are given and there is no exact match).

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 100 of 201

The <FOR> entry in the reply only occurs if the corresponding <FOR> has been included in the
command parameters. If present, it indicates the number of entries matching the criteria. So, for
example, you could do the following (using a marker over the ARTISTMEDIA list):

$SEARCH$<CACHE><FIND><MARKER>marker<START>Elton John<FOR>

…and get the reply:

ACK<OK><SEARCH><CACHE><FIND><MARKER>marker<START>Elton John
<FROM>78<FOR>6

…and this would indicate to you that there are exactly six entries (media) whose artist name has
the initial substring “Elton John” (ignoring case, of course).

The error has the same meaning as for the $SEARCH$<CACHE><LIST> command.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 101 of 201

Searching using an exact string – NAME only

Request

Command: $SEARCH$
Parameters: <CACHE>

<FIND>
<MARKER>marker
<NAME>str
<FOR> Optional

Reply

Command: ACK
Parameters:

Either:
<ERROR>
<MESSAGE>16Cache marker no longer valid

Or the following:
<OK>
<SEARCH>
<CACHE>
<FIND>
<MARKER>marker
<NAME>str

Followed by:
<NONE>

or:
<FROM>fff
<FOR>nnn Only if <FOR> given in the command

This searches the NAME field for the list in question. It is the same in all respects as
$SEARCH$<FIND>…<START>, except that you are matching the exact name (case-
independent), and there are no <NEXT> or <PREV> options.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 102 of 201

Searching using an exact string – NAME and MEDIA (for those caches that
support it)

Request

Command: $SEARCH$
Parameters: <CACHE>

<FIND>
<MARKER>marker
<NAME>namestr
<START>startstr
<PREV> Optional; may not be used with <NEXT>
<NEXT> Optional; may not be used with <PREV>
<FOR> Optional

Reply

Command: ACK
Parameters:

Either:
<ERROR>
<MESSAGE>16Cache marker no longer valid

Or the following:
<OK>
<SEARCH>
<CACHE>
<FIND>
<MARKER>marker
<NAME>namestr
<START>startstr
<PREV> Only if given in the command
<NEXT> Only if given in the command

Followed by either:
<NONE>

or:
<FROM>fff
<FOR>nnn Only if <FOR>given in the command

This command can only be performed on markers for ARTISTMEDIA and GENREMEDIA caches.

If the NAME field for the list in question does not exactly match namestr (case-independent, of
course), you will get <NONE>.

If it matches, then all MEDIA entries for that NAME are searched for an initial substring of startstr,
and behaviour is analogous to <FIND>…<START>, except that MEDIA, instead of NAME, is
being searched.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 103 of 201

It is worth noting that the same result (<NONE>) is produced in each of these two conditions:

• The <NAME> didn’t exactly match any cache entry’s NAME field;
• The <NAME> matched, you didn’t give a <NEXT> nor <PREV> parameter, and the

<START> substring didn’t match a corresponding <MEDIA> entry.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 104 of 201

Closing a marker

Although not strictly necessary, it is polite to close markers, to allow the RCP to release any
associated resources.

Request

Command: $SEARCH$
Parameters: <CACHE>

<CLOSE>
<MARKER>marker

Reply

Command: ACK
<OK>

This command always succeeds, even if the marker is invalid or already closed.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 105 of 201

 Advanced search facilities

This section gives a very general overview of the searching commands, their syntaxes, and a few
examples of their uses -- however, this is primarily a protocol specification. You should refer to
the companion Reference Manual for more information on how to use these commands.

What to use, and what not to use

We do not recommend the use of $SEARCH$<COUNT> and $SEARCH$<LIST>. Whilst these
are remarkably powerful commands, they can take a considerable time to execute on larger
databases (200 or more CD media, for example).

Whilst they are in progress, they prevent other commands to the server destination from
executing, and this leads to a profound slow-down in performance, particularly for multi-room
servers.

We are investigating alternative ways of implementing the same functionality. This may mean
any of the following:

• The withdrawal of $SEARCH$<COUNT> and $SEARCH$<LIST> in favour of other
commands offering similar capabilities;

• Significant changes to the syntaxes of those commands, to allow changes in the
underlying implementation that would speed up command execution;

• A full reimplementation of the functionality, leaving those commands intact in their current
form, and making them fast enough to be usable on a reasonably-populated system.

For all of these reasons, you should consider the following commands to be only partially
supported under version 1.00, and therefore are not considered to constitute part of the formal
1.00 Specification. You use them at your risk. They may not continue to work exactly as
described here:

• $SEARCH$<CATEGORIES>
• $SEARCH$<COUNT>
• $SEARCH$<LIST>
• $SEARCH$<JOIN>
• $SEARCH$<COMMIT><TAG>tag 4

• $SEARCH$<DELETE><TAG>tag…

In general, any $SEARCH$ command that uses or refers to search tags is not considered
formally specified at 1.00, although many servers which support 1.00 may also support the
commands.

4 Note that the $SEARCH$<COMMIT><ID>… variant is fully supported.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 106 of 201

Of databases and categories

We define three databases: <TRACKDB>, <PLAYLISTDB> and <SPLISTDB>. These behave
like individual databases, although this may not be how the underlying implementation arranges
the information they represent. This is why we call a database of this time a virtual database
(vDB). The columns or fields in a conventional database we call categories, and we call
individual rows lines, to differentiate them from their similar, but not identical roles in classic
databases.

First, a few general principles:

• Searches are always made with respect to searchable categories;
• A successful search will limit the number of possible selections (lines) from the database;
• The results of a search can be saved for future reference;
• Searches can be made incrementally upon the results of a previous search – in other

words, you can use a chain of searches, each feeding upon the results of the previous, to
minimise the number of matching entries;

• Successive searches must be made within the same database: mixing different
databases in a chained (incremental) search is not permitted.

Before any search can be made on a database, the controller will need to know which searchable
categories are available for it. The $SEARCH$<CATEGORIES> command is available for this
purpose.

Categories identify classes of information. A category in the track database, for example, could
be artist name, genre (rock? classical?), decade, or any other such. Any given category could
have few or many members – for example, the list of genres will be much shorter than that of
artist names.

Many categories are not unique: genre, for example, will have a limited number of possible
values, and each value may apply to many entries in the track database. Equally, a playlist’s
TYPE field can only have the values SPLIST or DPLIST.

For any given database, there will be a number of categories guaranteed to be present. The
descriptions of specific databases, below, will detail these. A few of those defined categories will
be guaranteed to have a unique value for each entry.

A number of databases are available for search. For convenience, below, we identify the
database parameter as <vdb>, which stands (for version 1.0) for one of the following:

• <TRACKDB>
• <PLAYLISTDB>
• <SPLISTDB>

The following sections provide detailed information on specific databases.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 107 of 201

How to search

All searching begins with the $SEARCH$<COUNT> command. This counts the number of
unique members of a given category that match the given criteria.

The simplest form of search on the track database would simply count the total number of entries
in a given category: for example, the number of different genres. If it is not using the results of a
previous search to constrain its scope, this will give the total number of matches over the whole
database.

However, as mentioned above, searches can be chained. The results of a search can be saved,
producing a search tag, which describes all the search criteria to date. This tag can then be
provided to subsequent searches upon the same database, to constrain the list of entries over
which the second search can operate.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 108 of 201

Listing the entries

We’ve used the $SEARCH$<COUNT> command, possibly several times in succession, to
constrain the list of tracks down to a small number which we want to examine in detail. The way
to list these entries is through the $SEARCH$<LIST> command, which allows an iterative search
for the contents of any given category. The $SEARCH$<LIST> command uses search tags
saved from $SEARCH$<COUNT>.

There are two ways of using $SEARCH$<LIST>: unique and non-unique. If you use the
<UNIQUE> parameter, the list will be of only the unique values for that category (as constrained).
Without it, the value of that category for every entry in the constrained database will be listed,
which will probably mean duplicates.

The command has mandatory <FROM> and <FOR> parameters. <FROM> specifies the start
index; <FOR> specifies the maximum number of entries to list, for that category.

The list of entries is always enumerated starting from 1. Of course, there are usually a different
number of entries for unique and non-unique lists from the same search, so the actual meaning of
the index differs depending upon the type of list you’re making.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 109 of 201

The track database (TRACKDB)

The track database is identified by the parameter <TRACKDB>. It lists all of the available tracks,
along with a wealth of information naming the track, its artist, the medium from which it comes,
the artist of the medium (which may be different, of course), and so forth. It also lists means by
which the track can be categorised: for example, the decade, the genre of music, the tempo et
cetera.

In the track database, the following categories are guaranteed to be present:

Category Type Meaning
TRACKID Numeric ID of the track
NAME String Name of the track
ARTIST String Name of the track’s artist
MEDIAID Numeric ID of the track’s media
MEDIANAME String Name of the track’s media
TRACKNUM Numeric The track’s number in its

media (from 1)
GENRE String The track’s media genre.

Table xiii: TRACKDB categories

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 110 of 201

The playlist database (PLAYLISTDB)

The playlist database contains all of the available information about playlists. It is identified by
the parameter <PLAYLISTDB>. These are the guaranteed categories:

Name Type Meaning
PLAYLISTID Numeric ID of the playlist
PLAYLISTNAME String Name of the playlist
TYPE String Type (SPLIST or DPLIST) of the playlist.

Table xiv: PLAYLISTDB categories

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 111 of 201

The static playlist database (SPLISTDB)

The static playlist database contains a list of tuples of (static playlist ID, item ID). This makes it
rather powerful. You can search the SPLISTDB with a given playlist ID, to get all the items
(usually track IDs) saved under that ID; you can search it with a given item ID to find all the static
playlists which contain it. You can even find out how many static playlists contain items whose
name contains the word "hatstand"!

These are the guaranteed categories:

Name Type Meaning
PLAYLISTID Numeric ID of the playlist
PLAYLISTNAME String Name of the playlist
ITEMID Numeric ID of the item
ITEMNAME String Name of the item

Table xv: SPLISTDB categories

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 112 of 201

Search tags

The results of a $SEARCH$<COUNT>, which begins a search, can be saved as a search tag. A
search tag represents the following pieces of information:

• The search criteria to date (the constraints);
• The database being searched;
• The list of items in that database which, at the time of searching, matched the criteria.

Tags have an indefinite lifetime. If they are not deleted, they persist. It’s important, therefore, to
track them and to delete those no longer needed, otherwise they will accumulate. That
accumulation may eventually cause degradation in performance, or even cause resources
(memory or disk) to run low. A number of commands can cause tags to be deleted implicitly or
explicitly, and one in particular can delete all outstanding tags.

Almost all versions of the XiVA software cause all outstanding search tags to be deleting when
the server reboots. Since you cannot know how long it will be before the next reboot, however,
you should not rely upon this behaviour to take care of your “housekeeping” for you.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 113 of 201

Obtaining categories

WARNING – we do not recommend the use of this command. See What to use, and what not
to use, on page 105.

Request

Command: $SEARCH$
Parameters: <CATEGORIES>

<vdb> Mandatory; identifies the database.

The sender wants to obtain the current list of searchable categories for the given database.

Remember, vdb is one of the following:

• TRACKDB
• PLAYLISTDB
• SPLISTDB

Reply

Command: ACK
Parameters: <OK>

<CATEGORIES>
Followed by one or more of these:

<CAT>name

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 114 of 201

Searching and counting

WARNING – we do not recommend the use of this command. See What to use, and what not
to use, on page 105.

$SEARCH$<COUNT> is an extremely powerful command. It is used to examine the available
databases at many levels of detail.

In its simplest form, it simply allows the caller to obtain the count of all of the unique names (or
those matching pattern-matching criteria) in a given category.

In a slightly more advanced usage, it can create a tag (a stored record of the results of this
search), which can be used to enumerate and list the unique names.

It can allow the results of previous searches to be progressively filtered by successive searches,
allowing extremely sophisticated searches to be made.

Request

Command: $SEARCH$
Parameters: <COUNT> Mandatory

either:
<vdb> Optional – see later

or:
<TAG>tag Optional – see later

and then:
<CAT>name Mandatory
<NOT> Optional – modifies <MATCHING> or <LIKE>
<LIKE>string Optional – incompatible with <MATCHING>
<MATCHING>string Optional – incompatible with <LIKE>
<CASE> Optional – modifies <MATCHING>
<SAVE> Optional

If supplied, <vdb> will be the identifier for a specific database. At version 1.0, it must be either
<TRACKDB>, <PLAYLISTDB> or <SPLISTDB>.

If supplied, the <TAG> must be a valid tag from a previous search, in which case this count
progressively narrows that search, and the database to use is inherited from that search.

One of <vdb> or <TAG> must be supplied, but not both; the two are mutually incompatible.

<CAT> introduces the name of a category. It is mandatory.

<NOT> may only be used if <LIKE> or <MATCHING> is also specified, and reverses their
meaning.

<LIKE> gives simple string matching, using a wildcard character of ‘*’, which matches zero or
more characters. Matching using <LIKE> is case sensitive. <LIKE> is incompatible with
<MATCHING>.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 115 of 201

<MATCHING> allows Unix-style regular expression matching. See man egrep(1) for more details
of how this can be used. <MATCHING> is incompatible with <LIKE>. By default, <MATCHING>
is case insensitive:

<CASE> may only be used if <MATCHING> is also specified. <CASE> makes <MATCHING>
case sensitive.

You do not have to supply either <LIKE> or <MATCHING>. If you supply neither, you will match
all items in the category, the identical effect to "<LIKE>*".

<SAVE> requires that the results of the search be saved, and that the result be given an arbitrary
tag to allow incremental searches to be made. If this command includes a <TAG>, making it an
incremental filter on a previous search, that previous tag remains valid afterwards, allowing a
search to be “branched”.

Reply

Command: ACK
Parameters: <OK>

<COUNT>nnn nnn is a positive integer or zero
<TAG>tag Optional

The <COUNT> is the number of unique names that satisfy the matching criteria given. If no
matching criteria (<LIKE> or <MATCHING>) were given, the <COUNT> is the total number of
names in the category.

If the request included a <RECYCLE> or <SAVE> parameter, and if this search produces a non-
zero count, the reply will include a <TAG> assigned by the server.

In the case of <RECYCLE>, this will be the same as the <TAG> given in the request.

In the case of <SAVE>, this will be a newly created tag.

The meaning of any given tag is opaque to the sender, who should simply regard it as a “magic
cookie”, and not attempt to divine any meaning from it.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 116 of 201

Enumerating a search

WARNING – we do not recommend the use of this command. See What to use, and what not
to use, on page 105.

Note that searches are enumerated from 1, not from 0. Enumeration relies upon the use of tags
from prior searches (see previous). The database is not specified; this is implicit in the search
tag.

Request

Command: $SEARCH$
Parameters: <LIST> Mandatory

<TAG>tag Mandatory
<ORDERED> Optional
<CAT>category<CAT>category… At least one of these
<UNIQUE> Optional
<FROM>nnn Mandatory; nnn is a positive integer
<FOR>nnn Mandatory; nnn is a positive integer

This requests the contents of the given categories for the matching database lines.

The tag can be from a $SEARCH$<COUNT>…<SAVE> on any of the vDBs.

The order of the <CAT>s is significant. The first <CAT> is the most important. If you supply the
<ORDERED> parameter, the list will be ordered (sorted) by this first category; if you supply the
<UNIQUE> parameter, the list will be unique in this first category (but not necessarily by others).

If <UNIQUE> is not given, there will be as many results as there are individual entries which
match the search criteria, and the index will be over that many entries.

The <FROM> parameter specifies the initial index (starting from 1, not 0); the <FOR> parameter
specifies the number of lines to return. You may not get back as many lines as you request, if
there is not enough space in the packet, or not enough remaining that satisfy your criteria.

It is not an error to request more than there are available. In fact, one perfectly reasonable way
of iterating over the results of a search is to make the first <LIST> as <FROM>1<FOR>999, and
then keep asking <FOR>999, starting <FROM> where the previous ACK list left off, until you
get an <EOF>.

Reply

Command: ACK
Parameters: <OK>

<LIST>
<TAG>tag Same as request
<FROM>nnn Same as request
<FOR>mmm May be less than request

Then ’mmm’ entries as follows:
<AT>xxx (For xxx = nnn to (nnn+mmm-1))
Followed by one or more of this:

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 117 of 201

<HAS>entry One for each <CAT> given

After which:
<EOF> Optional; if this completes enumeration

Note that the number in the <FOR> entry may be less than requested, either because there are
fewer entries remaining than requested, or because not all of them could be fitted into the packet
maximum size.

Each ’line’ of data starts with <AT>xxx (where xxx is the line number in the list)

Note that a <HAS> entry can contain no data (in other words, there is no argument to the <HAS>
parameter), if the corresponding category in that line of the database is empty.

If there are no more matching lines after this enumeration, there will be an <EOF> parameter.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 118 of 201

Joining searches

WARNING – we do not recommend the use of this command. See What to use, and what not
to use, on page 105.

This command allows the results of more than one search to be combined. All search tags must
be over the same database. For vDBs that support the <COMMIT> operation, you cannot
<COMMIT> a <JOIN>ed tag to a <DPLIST>, only an <SPLIST>.

Request

Command: $SEARCH$
Parameters: <JOIN>

<TAG>tag Mandatory, one or more.
<DELETE> Optional

If the <DELETE> parameter is supplied, all tags listed will be deleted after the new tag has been
created. This is to assist client programs "housekeep" their search tags.

Reply

Command: ACK
Parameters: <OK>

<TAG>tag

This command always generates a new tag regardless.

Tricks and tips

If, for some reason, you want to duplicate an existing search, you can use this command with a
single <TAG> argument and without the <DELETE> argument to create a duplicate search.
Changes to the tag from which the new one was derived will not affect the new tag. Note
carefully the comments above about not being able to <COMMIT> a <JOIN>ed tag to a
<DPLIST>, though.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 119 of 201

Committing category searches

WARNING – we do not recommend the use of this command. See What to use, and what not
to use, on page 105.

Request

Command: $SEARCH$
Parameters: <COMMIT>

<TAG>tag Mandatory
<DPLIST> Optional; incompatible with <SPLIST>
<SPLIST> Optional; incompatible with <DPLIST>
<NAME>name Mandatory
<DELETE> Optional
<REPLACE> Optional

The <TAG> must have been the result of a previous search over <TRACKDB> or <SPLISTDB>,
or the results of a $SEARCH$<JOIN>.

The <NAME> parameter gives the playlist created by the search a name, and saves it
permanently for future use. Unless the <REPLACE> parameter is present, this name must be
unique over all existing playlists, regardless of type. The command will fail otherwise.

<DPLIST> (dynamic playlist) and <SPLIST> (static playlist) determine the type of playlist being
created.

One of <DPLIST> or <SPLIST> (but not both) must be given.

There are restrictions upon which types of search tag are suitable for saving as a <DPLIST>. At
present, the only tags suitable are those which are the result of a
$SEARCH$<COUNT><TRACKDB>. You cannot save a tag which resulted from a
$SEARCH$<COUNT><TAG>… or $SEARCH$<JOIN> as a <DPLIST>.

If the <DELETE> parameter is given, and the command succeeds, the tag is discarded after the
playlist has been saved; otherwise, the tag remains valid.

If the <REPLACE> parameter is given, any existing playlist named name will be overwritten by
the newly created one.

It is an error to attempt to <COMMIT> a search that has zero entries, or an invalid tag, or a
search tag from any database other than the track database, or a search tag which is unsuitable
for the type of playlist being saved.

Reply

Command: ACK
Parameters: <OK>

<PLAYLIST>id ID of the newly-created playlist

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 120 of 201

Committing a playlist without searches

If you have a list of track or media IDs, you can create or append to a static playlist without having
to search first.

Request

Command: $SEARCH$
Parameters: <COMMIT>

<ID>id<ID>id… Up to version 1.01: One or more of these
From version 1.02: Zero or more of these

and then either (provided at least one <ID> is specified above):
<PLAYLIST>id The ID for a static playlist already known

or:
<NAME>name A new, unique name.
<REPLACE> Optional

If the <PLAYLIST> parameter is used, the IDs are appended to the preexisting static playlist with
that ID; if the <NAME> parameter is used instead, the command will try to create a new static
playlist with the given name.

It is an error to provide an invalid <PLAYLIST> ID, or one for a dynamic playlist. It is also an error
to supply a <NAME> which duplicates one already extant, unless the <REPLACE> parameter is
present; in the latter case the original playlist is overwritten by the new one.

Reply

Command: ACK
Parameters: <OK>

<PLAYLIST>id id is an opaque identifier

If the command used <PLAYLIST>, the one in the reply will be the same. If the command used
<NAME>, the <PLAYLIST> in the reply will be that of the newly-created static playlist.

The $SEARCH$<COMMIT><NAME>name variant of this command (introduced in Protocol
version 1.02) simply allows an empty playlist to be created. Previously this was not permitted.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 121 of 201

Deleting search tags

WARNING – we do not recommend the use of this command. See What to use, and what not
to use, on page 105.

Request

Command: $SEARCH$
Parameters: <DELETE>

<TAG>tag<TAG>tag… At least one of these

This seeks to delete the given search tags. This is a good thing to do, as search tags remain
valid until destroyed, and will use up precious memory and disk resources. This command affects
all types of search tags, however created.

Reply

Command: ACK
Parameters: <OK>

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 122 of 201

Renaming a playlist

Request

Command: $SEARCH$
Parameters: <RENAME>

<PLAYLIST>old-name
<TO>new-name

The replacement name given by <TO> must be unique over all existing playlists, regardless of
type. The command will fail if it is not.

Reply

Command: ACK
Parameters: <OK>

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 123 of 201

Reporting an external modification of the database

[Request (and reply) introduced in Protocol version 1.02]

This request is provided for the use of systems that change the database in a manner which
otherwise bypasses XiVA™-Link Protocol. It is unlikely that a normal controller will need to use it.
It essentially forces the server to reload all its caches and send appropriate updates to those
controllers which have switched them on.

 Request

Command: $SEARCH$
Parameters: <RESET>

<TRACKDB>

Reply

Command: ACK
Parameters: <OK>

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 124 of 201

Online operations

The server must be put online in order to communicate with Internet CD databases. These
commands deal with the management of this process.

Bear in mind that more than one source may want the server online, or offline. These are the
principal features of the operation:

• When no source is still requesting the server to be online, it will go offline;
• If at least one source requests it go to online, it will attempt to do so;
• It may not succeed in the attempt to go online;
• It may take an indefinite period (including possible retries) to do so;
• If an online connection is idle for more than a given period of time, the connection may

drop.

As a result of these, any requests to change the online status are considered to be suggestions,
rather than mandates. The server will notify interested parties when its online status changes, if
they have requested updates.

All of these commands should be sent to the server destination-id.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 125 of 201

Requesting on/offline state

Request

Command: $ONLINE$
Parameters: <WANT>

then either:
<ON>

or:
<OFF>

Exactly one of <ON> or <OFF> must be supplied.

Reply

Command: ACK
Parameters: <OK>

if the server enters or was already in the requested online state or:

Command: ACK
Parameters: <ERROR>

<MESSAGE>XXmessage

[Introduced in Protocol version 1.02]
<TYPE>IXXdetail Optional: if detail about the failure is available

The components of IXXdetail are :-

• I : a single hex digit indicating the network interface involved (currently `0’ for the first
ethernet interface or `1’ for the first dialup modem interface);

• XX : an error detail code (in the form of two hex digits) which is specific to the type of
network interface and

• detail: a textual description of the type of failure.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 126 of 201

Networking error detail codes

The following table provides an interpretation of the error detail codes for a dialup modem
connection. They are grouped by shading into general errors, errors related to establishing a
telephone connection, errors related to negotiating an Internet connection and account
management errors. Some should only arise in the event of a faulty installation. Informative error
detail codes have not yet been specified for ethernet connections but this is expected in a future
version of the Protocol.

XX= Means
00 OK : The connection succeeded.
01 Timed out : The connection attempt did not succeed within the timeout period.
02 Aborted by user
03 Port busy
04 Modem not responding
05 Bad modem init string
06 No carrier
07 No dial tone
08 Line busy
09 Bad dial command
0a Voice line detected
0b Fax line detected
0c Number blacklisted (Power cycle the box to clear this error for a given phone

number.)
0d Unknown dialling error
0e Fatal PPP (Point-to-Point Protocol) error
0f Bad PPP options
10 PPP incorrectly configured
11 PPP interrupted
12 PPP port problem
13 Connect script failed
14 PPP negotiation failed
15 Peer authentication failed
16 Idle connection timeout
17 Connection timeout
18 Peer not echoing
19 Modem hung up
1a Loopback detected
1b Init script failed
1c Authentication (of system by ISP) failed
1d Unknown PPP error
1e Unknown error
1f No dial-up account configured
20 Missing default ISP account
21 Bad default ISP account
22 Default ISP account problem
23 Problem updating ISP account

Table xvi: Dialup modem connection error detail codes (<TYPE>1XXdetail)

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 127 of 201

Checking online status

Request

Command: $STATUS$
Parameters: <ONLINE>

Reply

Command: ACK
Parameters: <OK>

<ONLINE>status

The status argument is one of the following:

• YES (the server is online);
• NO (the server is not online, and is not attempting to connect);
• UNKNOWN (the online status is unknown at present);
• CONNECTING (the server is in the process of trying to connect);
• DISCONNECTING (the server is in the process of trying to disconnect).

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 128 of 201

Requesting a TRACKDB update

Request

Command: $ONLINE$
Parameters: <UPDATE>

<TRACKDB>

The command is slightly confusingly named: unlike the $STATUS$<UPDATE> commands, it is
not requesting status updates (see the section “Update notifications” elsewhere in this
Specification).

This command requests the server (if it is online) to update the contents of its database from
online disc databases – for example, CDDB or similar. It is the controller’s responsibility to
ensure that the server is indeed online before performing this operation, which will fail if it is not.

When you initiate this command, it triggers a sequence of operations that can take some time, or
even fail.

Reply

Command: ACK
Parameters: <RXD>

then if the lookup is completed (some or all of the discs may not be found in the
database):
Command: ACK
Parameters: <OK>

<TOTAL>total total is the number of items to be looked up
<FAILED>failed failed is the number not found in the database

else if the lookup failed (communication with the database failed or was never
established):
Command: ACK

<ERROR>
<MESSAGE>15Lookup failed
<TOTAL>total As above
<FAILED>failed As above
<LEFT>left left is the number of items which remained to be

looked up when communication failed

[Introduced in Protocol version 1.02]

else if the lookup was aborted (see below):
Command: ACK
Parameters: <WARNING>

<MESSAGE>89Aborted by user
<TOTAL>total As above
<FAILED>failed As above
<LEFT>left left is the number of items which remained to be

looked up when lookup was aborted

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 129 of 201

Note that early versions of the server did not report failure of communication with the online
database as described above; instead they returned: ACK<OK><TOTAL>total<FAILED>total.
This situation was thus indistinguishable from successful communication with a database which
did not contain any of the items looked up.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 130 of 201

Aborting a TRACKDB update

[Introduced in Protocol version 1.02]

The database update operation initiated by an $ONLINE$<UPDATE><TRACKDB> request (See
above) may take some time, particularly if requests to the remote services involved (possibly
including DNS servers) must be repeated, e.g. due to heavy loading of the latter. This new
request allows the update operation to be cancelled directly. It will fail if there is no lookup in
progress or a lookup is already in the process of being cancelled.

Request

Command: $ONLINE$
Parameters: <UPDATE>

<TRACKDB>
<ABORT>

Reply

Command: ACK
Parameters: <OK>

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 131 of 201

Recording – ripping discs

All of these commands (unless otherwise stated) should be sent to the server destination-id.

You will see, in each command description that refers to a disc, the cryptic phrase
<DISCTYPE>discnum. Initially, the only DISCTYPE will be CD. The discnum refers to the disc
unit of that type, and these are numbered from 1 onwards, with leading zeroes ignored. So,
where you see <DISCTYPE>discnum, you will probably be using <CD>1 (or <CD>01, which is
the same thing) initially.

In future, we intend to expand this (adding more DISCTYPEs) to include DVDs, minidiscs, CD
recording technology, and so on.

When performing any command upon a given disc unit, you may get the error:

ACK<ERROR><MESSAGE>0eDevice busy

This indicates that the drive is in use and cannot perform the requested command.

What happens when ripping

First, the user places a new CD in the CD drive.

At this point, if possible, or at a later time when prompted by a controller, the server inspects the
CD, and derives from information on the disc a signature (this has no relation to track or media
IDs). It can use this signature to identify the disc to online databases.

The server checks to see if the CD is already logged in the media database. If it is, there is no
further work to do until ripping. If it is not, the new CD is logged in the media database with only
the information that can be obtained from the disc: signature, number of tracks and (maybe) track
lengths. A later online update can obtain from the online database (or similar) the extra
information, such as album, track and artist names, genre and so on, and update the server’s
database, but ripping can proceed without having gone online first.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 132 of 201

Finding out which discs are configured

Request

Command: $STATUS$
Parameters: <DRIVES>

Reply

Command: ACK
Parameters: <OK>

<DRIVES>
followed by zero or more of these:

<DISCTYPE>nn nn is the number of drives for this
DISCTYPE

The only DISCTYPE defined at 1.00 is CD. In future, you may also see parameters such as
“<DVD>nn”, and similar.

Note: some early versions of the server software had a bug in which the <DRIVES> parameter in
the reply was accidentally omitted.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 133 of 201

Querying a drive’s status

Request

Command: $STATUS$
Parameters: <DISCTYPE>discnum

Reply

Command: ACK
Parameters: <OK>

<DISCTYPE>discnum
then either:

<NONE> No disc loaded
or:

<INVALID> Disc corrupt or of unknown type
or one or both of:

<DATA> Disc contains data tracks
and/or:

<AUDIO>nn Disc contains nn audio tracks,
<MEDIA>
<ID>id and has media id id

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 134 of 201

Describing a drive’s media

Request

Command: $STATUS$
Parameters: <DISCTYPE>discnum

<MEDIA>

Reply

Command: ACK
Parameters: <OK>

<DISCTYPE>discnum
<MEDIA>

then:
<NONE> Meaning no disc is loaded

or:
<ID>id
<NONE> Meaning only the media ID is available

or:
<ID>id
<NAME>media-name media-name is a string
<ARTIST>media-artist media-artist is a string
<GENRE>genre genre is a string
<LOOKUP>yesno yesno is either YES or NO

[Introduced in Protocol version 1.02]

then, provided a disc is loaded:
<MEDIA>
<NUM>media-num media-num is the media’s media number

(c.f. `Select media by media number’, p 50).

If an online database lookup (see $ONLINE$<UPDATE><TRACKDB>, p 128) has not been
performed or the media was not found in the online database used and the media details have
not been edited, then media-name and media-artist are likely to be temporary names assigned by
the server. The yesno argument for <LOOKUP> is NO unless the media has been successfully
looked up.

If an online database lookup (see $ONLINE$<UPDATE><TRACKDB>, p 128) has not been
performed, this will lead to less information being available. Unless the media details have been
edited,

As of version 1.02 of the Protocol there are alternatives to this request for controllers with input
buffers of less than 1024 bytes (see page 184 and after).

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 135 of 201

Describing a drive’s media’s tracks

Request

Command: $STATUS$
Parameters: <DISCTYPE>discnum

<TRACK>
<FROM>mm Optional; default is 1
<TO>nn Optional; default is last track

Note that track numbers are numbered from one, not zero. Note also that you may not get all the
track information you requested, if it could not be made to fit into one packet. If so, you should
make repeated calls, each <FROM> the entry following the last in the previous reply, until you get
all of the entries you need.

Reply

Command: ACK
Parameters: <OK>

<DISCTYPE>discnum
<TRACK>

then either:
<NONE> Meaning that no disc is loaded

or:
<FROM>mm mm is same as for request
<TO>tt tt may be less than in request
followed by either:

<NONE> No information is available at present
or (tt-mm+1) entries, each with up to three parameters of the following format:

<TRACK>xx For xx from mm to tt inclusive
<LEN>hhhh:mm:ss Optional; only if this information is available
<NAME>track-name Optional; only if this information is available

[Introduced in Protocol version 1.02]
<EOF> if the last track listed above is the last on the

disk

If an online database lookup (see <ONLINE><UPDATE><TRACKDB>) has not been performed,
this will lead to less information being available.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 136 of 201

Opening or closing the drive door (ejecting or loading a disc)

Request

Command: $RECORD$
Parameters: <DISCTYPE>discnum

and then:
<OPEN >

or:
<CLOSE>

[Introduced in Protocol version 1.02]
or:

<TOGGLE>

If the disc device does not have a drive door or tray (for example, if it is a slot-loader), the OPEN
or CLOSE operations will correspond to the equivalent operations for ejecting or loading a disc,
respectively. The <TOGGLE> variant of this command toggles the state of the drive tray. It will
only succeed if the tray has reached a stable state (open or closed) before it is received.

Loading a disc has the effect of causing it to be registered with the server’s database, even if no
tracks are recorded.

Reply

Command: ACK
Parameters: <OK>

If the operation is not supported at all by the device, the command will normally succeed silently
without effect.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 137 of 201

Rereading the drive’s media information

Request

Command: $RECORD$
Parameters: <DISCTYPE>discnum

<READ>

Reply

Command: ACK
Parameters: <OK>

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 138 of 201

Recording a disc’s contents

Request

Command: $RECORD$
Parameters: <DISCTYPE>discnum

<COMPR>compr-id Optional : see below

then either:
 zero, one or both of the following:

<FROM>mm Optional; mm defaults to 1
<TO>nn Optional; nn defaults to last track

or one or more of:
<TRACK>ttt

If a <COMPR> parameter is supplied, compr-id (which specifies the encoding to use) must be
one of the values returned in the reply to a $STATUS$<COMPR>tracktype request (see Track
encoding types, page 60). The encoding used in the absence of a <COMPR> parameter is the
server’s default encoding for that track type.

Up to version 1.01 of the Protocol, the default encoding was an uncompressed one (e.g. WAV for
AUDIO).

As of version 1.02 of the Protocol, the default encoding is a configuration item (e.g. AUDIO) under
the DefaultEncodings category (see Configuring the server, page 149). Note that the factory
setting of these defaults may not match the pre-1.02 defaults.

Reply

Command: ACK
Parameters: <RXD>

then when recording ends (whether it completes, fails or is aborted):
Command: ACK
Parameters: <OK>

<RECORD>
<DISCTYPE>discnum
<TOTAL>total total is the number of tracks requested
<FAILED>failed failed is the number which could not be recorded
<LEFT>left left is the number which were not attempted

(only non-zero if recording ended prematurely)

Note: If you need to be notified of recording progress, request the corresponding update (see
Record state update on page 69).

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 139 of 201

Aborting a ripping operation

Request

Command: $RECORD$
Parameters: <DISCTYPE>discnum

<ABORT>

Reply

This indicates that the operation has been terminated. You may get an <RXD> first if it is likely to
take a while.

Command: ACK
Parameters: <OK>

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 140 of 201

Finding out the ripping status

Request

Command: $STATUS$
Parameters: <DISCTYPE>discnum
<RECORD>

Reply

Command: ACK
Parameters: <OK>

<DISCTYPE>discnum
<RECORD>

then:
<NONE> No operation in progress

or:
<TRACK>tracknum The track number (from 1) currently recording
<POS>pp pp is a percentage-complete for this track

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 141 of 201

Altering database contents

The following commands give a quick and easy way of making simple changes to information
held in the track database.

They must all be sent to server.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 142 of 201

Changing track information

Request

Command: $ALTER$
Parameters: <TRACK>

<ID>track-id
<NAME>name Optional
<ARTIST>artist Optional

At least one of <NAME> and <ARTIST> must be supplied.

If the <NAME> parameter is supplied, the name of the track is changed to the given text.

If <ARTIST> is supplied, the artist name of the track is changed to the given text.

Reply

Command: ACK
Parameters: <OK>

This reply indicates that the changes have successfully been implemented. This does not mean
that the changes are permanent: if the server were to lose power, crash or reboot within a very
few seconds of the command completing, the changes may not have been written to permanent
storage in time.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 143 of 201

Changing media information

Request

Command: $ALTER$
Parameters: <MEDIA>

<ID>id
<NAME>name Optional; see below
<ARTIST>artist Optional; see below
<GENRE>genre Optional; see below

At least one of <NAME>, <ARTIST> and <GENRE> must be supplied.

If the <NAME> parameter is supplied, the name of the media is changed to the given text.

If <ARTIST> is supplied, the artist name of the media is changed to the given text.

If <GENRE> is supplied, the media will be classified under the given genre, although NOTE that
this must only be one of the already-entered genre types.

You can use use the $SEARCH$ commands to find out the available genres: in particular,
$SEARCH$<CACHE> on the GENRE cache is useful.

Reply

Command: ACK
Parameters: <OK>

This reply indicates that the changes have successfully been implemented. This does not mean
that the changes are permanent: if the server were to lose power, crash or reboot within a very
few seconds of the command completing, the changes may not have been written to permanent
storage in time.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 144 of 201

Changing playlist information

Request

Command: $ALTER$
Parameters: <PLAYLIST>

<ID>id
<NAME>name
<REPLACE> Optional

Changes the name of the playlist to the given text.

Normally, you may not change to a pre-existing name; however, if the optional <REPLACE>
parameter is supplied, and there is a pre-existing playlist with the same name, that playlist will be
deleted before the list given by id is renamed.

Reply

Command: ACK
Parameters: <OK>

This reply indicates that the changes have successfully been implemented. This does not mean
that the changes are permanent: if the server were to lose power, crash or reboot within a very
few seconds of the command completing, the changes may not have been written to permanent
storage in time.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 145 of 201

Deleting database contents

These commands are used to delete tracks, media or playlists from the database. Use them with
caution!

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 146 of 201

Delete a track (and its corresponding media file)

Request

Command: $DELETE$
Parameters: <TRACK>

<ID>id

Reply

Command: ACK
Parameters: <OK>

If successful, the track, and its corresponding media file, have been removed from the server.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 147 of 201

Delete media

Request

Command: $DELETE$
Parameters: <MEDIA>

<ID>id
<TRACK> Optional

If the optional <TRACK> parameter is present, all track entries and their corresponding media
files will also be deleted.

If it is not present, only the entry for the media itself will be removed; the tracks and their media
files still exist, and can be searched for. In this way, you can remove the knowledge of the media
from the server, whilst keeping unchanged any playlists which may include the tracks the media
contained.

Reply

Command: ACK
Parameters: <OK>

If successful, the media has been deleted from the server.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 148 of 201

Delete playlist

Request

Command: $DELETE$
Parameters: <PLAYLIST>

<ID>id

This seeks to delete a playlist of a known ID. To prevent accidental deletions, you must have the
ID; there is no provision for deleting a playlist by name.

Reply

Command: ACK
Parameters: <OK>

If successful, the playlist has been deleted from the server. The items that playlist references still
exist: this command does not delete associated tracks etc.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 149 of 201

Configuring the server

The following commands are all related to changing parts of the server’s permanent
configuration.

Configuration items are grouped under categories. Within each category, there are one or more
items.

An item will have an itemtype, which identifies how the item is stored. Valid itemtypes are:

• STRING – a string which can be modified;
• RO_STRING – a string which cannot be modified, and is given for information only;
• LIST – a list of items, effectively a “menu” from which only one can be selected;
• BOOL – a true/false value, given as a string. If the first character is ‘t’, ‘T’, ‘y’ or ‘Y’ the

value true is assumed: any other value is taken to mean false;
• INTEGER – a 32 bit signed number with no fractional part;
• ADDRESS – a dotted-quad IP address in the form “a.b.c.d” (without the quotes), where a,

b, c and d are values in the range 0…255. They do not have to be zero-padded to three
digits. For example, “192.168.0.1” is a valid ADDRESS;

• TIME – a date/time value of the form: “hh:mm:ss YYYY-MM-DD” (without the quotes, but
with the space in the middle). hh,mm and ss are hours, minutes and seconds
respectively; YYYY is four-digit year; MM and DD are numeric month and day respectivel.
For example, “23:59:59 1999-12-31” is a valid TIME field).

As at 1.00, the TIME type is not yet used.

The LIST type

The LIST type requires a little more explanation. It has a number of possible values, all of which
are preset.

You can use $CONFIG$<READ>category<LIST>item to obtain all of its possible values, and the
$CONFIG$<SET>category<ITEM>item to set it to one of those possible values.

To obtain all of its possible values, use the $CONFIG$<READ>category<LIST>item command.

The effect of configuration

When you change a configuration item, that changed value is stored permanently.

It may also have an immediate effect, or may only come into effect following the next system
reboot.

The following table lists some of the configuration items defined under version 1.00. The reboot
column indicates whether the server must be rebooted in order for the change to take effect:

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 150 of 201

Configuration and destination-id

Configurable items are specific to each destination-id. Those that are configurable under server
affect the system as a whole; those that are configurable under playout destinations affect only
that specific destination for which the configuration is set.

You should obtain the lists of categories and items for each destination-id you are planning to
configure.

Category ItemName Type Reboot Dest. type
Network Device LIST No server
Ethernet Mode LIST No server

Hostname STRING No server
IPAddress ADDRESS No server
IPMask ADDRESS No server
Gateway ADDRESS No server
IPDNS1 ADDRESS No server
IPDNS2 ADDRESS No server
AssignedIPAddress RO_STRING - server
AssignedIPMask RO_STRING - server

Modem BaudRate LIST No server
Port STRING No server
InitialisationString STRING No server
NumberOfRetries INTEGER No server
AssignedIPAddress RO_STRING - server
ServerIPAddress RO_STRING - server

Account Username STRING No server
Password STRING No server
PhoneNumber STRING No server

Diagnostic UnderrunThreshold INTEGER No (playout)
DropThreshold INTEGER No (playout)
SingleShotMode BOOL No (playout)

Information SerialNumber RO_STRING - server
(This section ProductionDate RO_STRING - server
is read-only) XiVASoftwareVersion RO_STRING - server

[Introduced in Protocol version 1.02]
DefaultEncodings AUDIO INTEGER No server

VIDEO INTEGER No server
PortUsers <a port, e.g. serial0> LIST No server
PortUserSettings <port>:<app>:<setting> (per item) (per item) server
NumCtrlrChans <a controller> RO_STRING - server
Controllers <a controller> STRING No (playout)
Modem Autoanswer BOOL No server

Table xvii: Configuration items

The items under the new configuration categories introduced in version 1.02 of the Protocol are
generally used in more complicated ways than their predecessors :-

• Items under DefaultEncodings store the per-track-type encodings which will be used for a
recording if no <COMPR> parameter is specified in a $RECORD$ request (See Recording a

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 151 of 201

disc’s contents, page 138). Valid values for these items may be obtained using
$STATUS$<COMPR>tracktype requests (see Track encoding types, page 60).

• The items under PortUsers are the names of available hardware ports, e.g. serial0 for the first
serial port. The value for each port will indicate the type of communication which is expected
to occur via that port; internally it specifies the application which should listen on that port. For
example, valid values for serial1 might be XiVALink and Infrared. Any configurable settings
for these applications are stored under PortUserSettings. The format of the item reflects the
fact that these settings are per-port as well as per-application. For example,
serial1:XiVALink:baud specifies the baud rate for XiVALink communication using the second
serial port.

• The items under Controllers are the names of supported remote controls. The string value
associated with each remote control under the Controllers category for a particular playout
zone comprises a comma-separated list of the channels of that remote control which control
that playout zone. The number of control channels provided by any supported remote control
may be read from the corresponding entry under the server-only NumCtrlrChans category.

Note: the string values read from Username and Password under the Account category will
comprise eight asterisks, so as to conceal the real values once they have been entered. Any
editor for these settings should either not read the concealed values at all (since they convey no
information) or convert each of them to an empty string if and when the user starts to edit it. As a
safeguard, attempts to write an eight-asterisk string as the actual value of one of these settings
will be rejected.

Note: the Autoanswer item under Modem is the only (at version 1.02 of the Protocol)
configuration item which is accessible when the server is in standby mode (see Querying and
setting the power mode on page 157). None of the other items may be read or set in this mode.

Note: if Autoanswer is set to YES, the server will pick up any incoming call on the phone line to
which it is attached. This mode is intended for remote diagnostics and it is recommended that any
controller using it should make it obvious to the user that the server is in this mode. For example,
a server in this mode and sharing a phone line with telephone handsets would intercept voice
calls destined for the latter.

Note: some early servers have a bug that means they do not support reading values under the
“Diagnostic” category, although you can still set the values. You should not rely upon being able
to read these values.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 152 of 201

Getting the categories

Use this command to get the list of configurable categories.

Request

Command: $CONFIG$
Parameters: <CATEGORIES>

Reply

Command: ACK
Parameters: <OK>

<CATEGORIES>
Followed by zero of more of the following:

<CAT>category

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 153 of 201

Examining a category’s list of items

Request

Command: $CONFIG$
Parameters: <LIST>category As supplied by $CONFIG$<CATEGORIES>

<FROM>fff Optional
<FOR>rrr Optional; only allowed if <FROM> given

This command seeks to enumerate the configurable items under category category, which must
be exactly as given in the reply to the $CONFIG$<CATEGORIES> command. The list numbers
from 1 onwards.

If <FROM> is not used, the default start number is 1.

The <FOR> parameter can only be used if <FROM> has been given. If it is not used, the default
is the last in the list.

Reply

Command: ACK
Parameters: <OK>

<CONFIG>
<LIST>category
<FROM>fff
<FOR>nnn May not be the same as rrr

Followed by nnn entries of the form:
<AT>iii
<HAS>itemname
<TYPE>itemtype Optional – only if information available

And finally:
<EOF> Optional – see below

The nnn argument may be less than rrr in the original request, if there were not that many entries,
or if not all of them could be fitted into the reply packet. If this is the case, you can repeat the
command, starting with newfff = fff + nnn, as many times as you need in order to get the full list.

If the type of the item is known, the <TYPE> parameter is given. If it is not, you should treat it as
a string.

If last entry in the packet is also the last entry of the full list of items available for that category, the
last entry will be followed by <EOF>.

It is not an error to specify a fff parameter that is greater than the total number of items available
for the category. If this happens, nnn will be zero, there will be no <AT> entries, and there will be
an <EOF> to indicate that there are no further entries to be had.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 154 of 201

Read the values of a LIST item

This command applies only to items whose itemtype (see $CONFIG$<LIST>) is LIST.

Request

Command: $CONFIG$
Parameters: <READ>category

<LIST>item
<FROM>fff Optional
<FOR>rrr Optional; only allowed if <FROM> given

This command seeks to enumerate the elements of an item whose itemtype is LIST. The list is
indexed from 1 onwards. (The first item is no. 1, the second no. 2, and so on.)

If <FROM> is not used, the default start number is 1.

The <FOR> parameter can only be used if <FROM> has been given. If it is not used, the default
is the number of items remaining between fff and the end of the list (which may be zero, if the list
has less than fff items – this is not an error).

Reply

Command: ACK
Parameters: <OK>

<CONFIG>
<READ>category
<LIST>item
<FROM>fff
<FOR>nnn

Followed by nnn entries of the form:
<AT>iii
<HAS>listitemval
<TYPE>listitemtype Optional; only if information available

Followed by:
<EOF> Optional; see below.

The format of value will be given by the listitemtype, if available. If the <TYPE> parameter is
missing, treat the listitemval as a string. The listitemtype is as in $CONFIG$<LIST> (see page
149), but, since nested lists are not supported, it cannot have the value LIST.

The nnn argument may be less than rrr in the original request, if there were not that many entries,
or if not all of them could be fitted into the reply packet. If this is the case, you can repeat the
command, starting with newfff = fff + nnn, as many times as you need in order to get the full list.

If the last entry in the packet is also the last entry of the full list of items available for that category,
the last entry will be followed by <EOF>.

It is not an error to specify a fff parameter that is greater than the total number of items available
for the category. If this happens, nnn will be zero, there will be no <AT> entries, and there will be
an <EOF> to indicate that there are no further entries to be had.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 155 of 201

Read the value of an item

Request

Command: $CONFIG$
Parameters: <READ>category

<ITEM>item

The category must be exactly as given in the reply to $CONFIG$<CATEGORIES>, and the item
as given in $CONFIG$<LIST>category.

Reply

Command: ACK
Parameters: <OK>

<CONFIG>
<READ>category
<ITEM>item
<HAS>value

The format of value will depend upon that item’s itemtype, as supplied by the reply to
$CONFIG$<LIST>category.

If the itemtype was LIST, then the value will be exactly as given in one of the values from the
reply to $CONFIG$<READ>category<LIST>item, and represents the currently-selected item in
that list.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 156 of 201

Set the value of an item

Request

Command: $CONFIG$
Parameters: <SET>category

<ITEM>item
<HAS>value

The category must be exactly as given in the reply to $CONFIG$<CATEGORIES>, and the item
as given in $CONFIG$<LIST>category. That item must not have the itemtype of RO_STRING.

The format of value will depend upon that item’s itemtype, as supplied by the reply to
$CONFIG$<LIST>category.

If the itemtype was LIST, then the value must be exactly as given in one of the values from the
reply to $CONFIG$<READ>category<LIST>item.

Reply

Command: ACK
Parameters: <OK>

<CONFIG>
<SET>category
<ITEM>item
<REBOOT>yesno yesno is either YES or NO.

If the yesno argument has the value YES, the server must be rebooted before any change has
effect.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 157 of 201

Querying and setting the power mode

[Introduced in Protocol version 1.02]

The server currently has two stable power modes (RUN and STANDBY) as well as two transient
modes (RESTART and SHUTDOWN). In the STANDBY mode most of the normal (RUN mode)
functionality of the server is unavailable. For example, the databases cannot be browsed, media
can not be played or recorded, most updates will be discontinued and most status queries will fail.
The server transitions from STANDBY mode to RUN mode via the RESTART mode; the reverse
transition is via the SHUTDOWN mode.

Querying the power mode

[Request (and response) introduced in Protocol version 1.02]

This request must be sent to server.

Request

Command: $STATUS$
Parameters: <POWER>

<MODE>

Reply

Command: ACK
Parameters: <OK>

<POWER>
<MODE>power-mode

power-mode may currently be `RUN’, `STANDBY’, `RESTART’ or `SHUTDOWN’. There is also an
implicit `OFF’ mode in which the server is fully powered down and simply will not respond to
requests including this one. Future versions of the protocol may provide support for a server to
advise controllers that it is about to enter this mode in a software-controlled manner.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 158 of 201

Changing the power mode

[Request (and response) introduced in Protocol version 1.02]

This request must be sent to server.

Request

Command: $SYSTEMS$
Parameters: <POWER>

<MODE>stable-power-mode

Reply

Command: ACK
Parameters:

Then:
<OK> The request has succeeded

or:
<ERROR>
<MESSAGE>0eDevice busy The server was in a transient power mode

stable-power-mode must currently be either `STANDBY’ or `RUN’. A successful request to take
the server from STANDBY to RUN will cause the server to pass through the transient `RESTART’
mode; the reverse transition is via the `SHUTDOWN’ mode. The error case occurs if the server is
in one of these transient modes, i.e. it is already processing an earlier such request or changing
power mode for some other reason.

When the server enters the RUN or STANDBY mode it will broadcast (see Broadcasts and
alerts on page 38) this information as follows :-

Command: $BROADCAST$
Paramters: <MESSAGE>Msg

<TYPE>RECONFIG
<DETAIL>Detail

If it enters the RUN mode, Msg will be `Server start’ and Detail will be `SERVERSTART’.
If it enters the STANDBY mode, Msg will be `Server stop’ and Detail will be `SERVERSTOP’.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 159 of 201

Alternative requests for controllers with small input buffers

[Introduced in Protocol version 1.02]

Standard XiVA-Link protocol requests result in a reply packet which is limited in length to a
maximum of 1024 bytes. This packet size is sufficient to allow, for example, multiple textual
attributes of a track (such as its title and artist and the name of the album to which it belongs) to
be returned in the reply to a single request. Some controllers, however, have more limited input
buffers. To enable such controllers to use the XiVA-Link protocol, alternatives to a subset of the
standard XiVA-Link requests have been introduced. Each original individual request, which
returns multiple string arguments and possibly other values, is replaced with a set of requests,
each of which returns one of the original values.

The reply packets to these new requests are limited to a configurable maximum length, which
defaults to the standard 1024 bytes but may be reduced to any value down to 66 bytes (see
Configuring communication on page 32). Where the single piece of information returned is a
number it is guaranteed not to be truncated. If it is a string it may be truncated to ensure that the
return packet does not exceed the requested size limit. Currently no indication is given to the
caller as to whether truncation has occurred.

These requests should in general only be used in controllers which cannot cope with a 1024-byte
reply packet, since multiple such requests are required to build up a set of data that is normally
returned using a single standard request.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 160 of 201

The name of a track

[Request (and response) introduced in Protocol version 1.02]

This allows a controller to request the title of a track specified by ID.

This request is one of the alternatives to the standard $SEARCH$<TRACK><ID>track-id request
(see Track details on page 86) and must be sent to server.

Request

Command: $SEARCH$
Parameters: <TRACK>

<ID>track-id Note that track-id is not optional.
<NAME>

Reply

Command: ACK
Parameters: <OK>

<NAME>name name may be truncated

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 161 of 201

The artist of a track

[Request (and response) introduced in Protocol version 1.02]

This allows a controller to request the name of the artist of a track specified by ID.

This request is one of the alternatives to the standard $SEARCH$<TRACK><ID>track-id request
(see Track details on page 86) and must be sent to server.

Request

Command: $SEARCH$
Parameters: <TRACK>

<ID>track-id Note that track-id is not optional.
<ARTIST>

Reply

Command: ACK
Parameters: <OK>

<ARTIST >artist artist may be truncated

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 162 of 201

The compression format of a track

[Request (and response) introduced in Protocol version 1.02]

This allows a controller to find out the format in which a track is encoded.

This request is one of the alternatives to the standard $SEARCH$<TRACK><ID>track-id request
(see Track details on page 86) and must be sent to server.

Request

Command: $SEARCH$
Parameters: <TRACK>

<ID>track-id Note that track-id is not optional.
<COMPR>

Reply

Command: ACK
Parameters: <OK>

<COMPR>compression-id

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 163 of 201

The length of a track

[Request (and response) introduced in Protocol version 1.02]

This allows a controller to request the length of a track specified by ID.

This request is one of the alternatives to the standard $SEARCH$<TRACK><ID>track-id request
(see Track details on page 86) and must be sent to server.

Request

Command: $SEARCH$
Parameters: <TRACK>

<ID>track-id Note that track-id is not optional.
<LEN>

Reply

Command: ACK
Parameters: <OK>

<LEN>hhhh:mm:ss

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 164 of 201

The media id of a track

[Request (and response) introduced in Protocol version 1.02]

This allows a controller to request the ID of the media to which a track (specified by ID) belongs.

This request is one of the alternatives to the standard $SEARCH$<TRACK><ID>track-id request
(see Track details on page 86) and must be sent to server.

Request

Command: $SEARCH$
Parameters: <TRACK>

<ID>track-id
<MEDIA>
<ID>

Reply

Command: ACK
Parameters: <OK>

<MEDIA>
<ID>media_id

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 165 of 201

Media name

[Request (and response) introduced in Protocol version 1.02]

This allows a controller to request the title of the media specified by an ID.

This request is one of the alternatives to the standard $SEARCH$<MEDIA><ID>media-id request
(see Basic media details (disc etc.) on page 88) and must be sent to server.

Request

Command: $SEARCH$
Parameters: <MEDIA>

<ID>media-id
<NAME>

Reply

Command: ACK
Parameters: <OK>

<NAME>title May be truncated

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 166 of 201

Media artist

[Request (and response) introduced in Protocol version 1.02]

This allows a controller to request the artist name for the media specified by an ID.

This request is one of the alternatives to the standard $SEARCH$<MEDIA><ID>media-id request
(see Basic media details (disc etc.) on page 88) and must be sent to server.

Request

Command: $SEARCH$
Parameters: <MEDIA>

<ID>media-id
<ARTIST>

Reply

Command: ACK
Parameters: <OK>

<ARTIST>artist-name May be truncated

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 167 of 201

Media genre

[Request (and response) introduced in Protocol version 1.02]

This allows a controller to request the genre of the media specified by an ID.

This request is one of the alternatives to the standard $SEARCH$<MEDIA><ID>media-id request
(see Basic media details (disc etc.) on page 88) and must be sent to server.

Request

Command: $SEARCH$
Parameters: <MEDIA>

<ID>media-id
<GENRE>

Reply

Command: ACK
Parameters: <OK>

<GENRE>genre

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 168 of 201

Media track count

[Request (and response) introduced in Protocol version 1.02]

This allows a controller to request the number of tracks in the media specified by an ID.

This request is one of the alternatives to the standard $SEARCH$<MEDIA><ID>media-id request
(see Basic media details (disc etc.) on page 88) and must be sent to server.

Request

Command: $SEARCH$
Parameters: <MEDIA>

<ID>media-id
<TOTAL>

Reply

Command: ACK
Parameters: <OK>

<TOTAL>number

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 169 of 201

Media length

[Request (and response) introduced in Protocol version 1.02]

This allows a controller to request the length of the media specified by an ID.

This request is one of the alternatives to the standard $SEARCH$<MEDIA><ID>media-id request
(see Basic media details (disc etc.) on page 88) and must be sent to server.

Request

Command: $SEARCH$
Parameters: <MEDIA>

<ID>media-id
<LEN>

Reply

Command: ACK
Parameters: <OK>

<LEN>hhhh:mm:ss

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 170 of 201

Media type

[Request (and response) introduced in Protocol version 1.02]

This allows a controller to request the type of the media specified by an ID.

This request is one of the alternatives to the standard $SEARCH$<MEDIA><ID>media-id request
(see Basic media details (disc etc.) on page 88) and must be sent to server.

Request

Command: $SEARCH$
Parameters: <MEDIA>

<ID>media-id
<TYPE>

Reply

Command: ACK
Parameters: <OK>

<TYPE>media-type media-type is AUDIO, VIDEO or MIXED.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 171 of 201

Media source

[Request (and response) introduced in Protocol version 1.02]

This allows a controller to request the source of the media specified by an ID.

This request is one of the alternatives to the standard $SEARCH$<MEDIA><ID>media-id request
(see Basic media details (disc etc.) on page 88) and must be sent to server.

Request

Command: $SEARCH$
Parameters: <MEDIA>

<ID>media-id
<SOURCE>

Reply

Command: ACK
Parameters: <OK>

<TYPE>media-source

media-source depends upon media-type (see Media type on page 170) . If media-type is AUDIO,
media-source is CD, DVD, LP, OTHER or UNKNOWN. If media-type is VIDEO, media-source is
DVD, VTR or UNKNOWN.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 172 of 201

ID of track within media

[Request (and response) introduced in Protocol version 1.02]

This allows a controller to find out the track id of a media item track.

This request is an alternative to the standard $SEARCH$<MEDIA><ID>media-id<TRACK>
request (see Media track details on page 89). Instead of using one request to obtain the list of
tracks, with multiple attributes per track included in the reply, this alternative request must be sent
once for each track in the media to obtain the ID of that track. Additional alternative requests
based on $SEARCH$<TRACK><ID>id must then be made to obtain further track attributes. This
request must be sent to server.

Request

Command: $SEARCH$
Parameters: <MEDIA>

<ID>media-id
<TRACK>
<NUM>track-number

Reply

Command: ACK
Parameters: <OK>

<TRACK>
<ID>track_id

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 173 of 201

The name of a playlist

[Request (and response) introduced in Protocol version 1.02]

This allows a controller to request the title of a playlist specified by ID.

This request is one of the alternatives to the standard $SEARCH$<PLAYLIST><ID>playlist-id
request (see Playlist details on page 90) and must be sent to server.

Request

Command: $SEARCH$
Parameters: <PLAYLIST>

<ID>playlist-id
<NAME>

Reply

Command: ACK
Parameters: <OK>

<NAME>name May be truncated

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 174 of 201

The number of entries in a playlist

[Request (and response) introduced in Protocol version 1.02]

This allows a controller to find out how many entries a playlist contains.

This request is one of the alternatives to the standard $SEARCH$<PLAYLIST><ID>playlist-id
request (see Playlist details on page 90) and must be sent to server.

Request

Command: $SEARCH$
Parameters: <PLAYLIST>

<ID>playlist-id
<TOTAL>

Reply

Command: ACK
Parameters: <OK>

<TOTAL>number

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 175 of 201

The length of a playlist

[Request (and response) introduced in Protocol version 1.02]

This allows a controller to request the length of a playlist specified by ID.

This request is one of the alternatives to the standard $SEARCH$<PLAYLIST><ID>playlist-id
request (see Playlist details on page 90) and must be sent to server.

Request

Command: $SEARCH$
Parameters: <PLAYLIST>

<ID>playlist-id
<LEN>

Reply

Command: ACK
Parameters: <OK>

<LEN>hhhh:mmm:ss

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 176 of 201

The type of a playlist

[Request (and response) introduced in Protocol version 1.02]

This allows a controller to request the type of a playlist specified by ID.

This request is one of the alternatives to the standard $SEARCH$<PLAYLIST><ID>playlist-id
request (see Playlist details on page 90) and must be sent to server.

Request

Command: $SEARCH$
Parameters: <PLAYLIST>

<ID>playlist-id
<TYPE>

Reply

Command: ACK
Parameters: <OK>

<TYPE>type type may be SPLIST or DPLIST

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 177 of 201

The track id of a playlist entry

[Request (and response) introduced in Protocol version 1.02]

This allows a controller to request the ID of the track at a specified position within a playlist.

This request is an alternative to the $SEARCH$<PLAYLIST><ID>playlist-id<TRACK> request
(see Playlist track details on page 91). Instead of using one request to obtain the list of tracks,
with multiple attributes per track included in the reply, this alternative request must be sent once
for each track in the playlist to obtain the ID of that track. Additional alternative requests based on
$SEARCH$<TRACK><ID>id must then be made to obtain further track attributes. This request
must be sent to server.

Request

Command: $SEARCH$
Parameters: <PLAYLIST>

<ID>playlist-id
<TRACK>
<NUM>track-number track-number is the track position (starting at 1)

Reply

Command: ACK
Parameters: <OK>

<TRACK>
<ID>track_id

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 178 of 201

The name of the current track

[Request (and response) introduced in Protocol version 1.02]

This allows a controller to request the title of the currently loaded track.

This request is one of the alternatives to the standard $STATUS$<TRACK> request (see Track
status on page 58) and must be sent to a playout zone. If no item has been selected for playout,
then all of these requests (like the standard request) will result in the error, ‘ 01No media cued to
play’.

Request

Command: $STATUS$
Parameters: <TRACK>

<NAME>

Reply

Command: ACK
Parameters: <OK>

<NAME>name May be truncated

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 179 of 201

The artist of the current track

[Request (and response) introduced in Protocol version 1.02]

This allows a controller to request the name of the artist for the currently loaded track.

This request is one of the alternatives to the standard $STATUS$<TRACK> request (see Track
status on page 58) and must be sent to a playout zone. If no item has been selected for playout,
then all of these requests (like the standard request) will result in the error, ‘ 01No media cued to
play’.

Request

Command: $STATUS$
Parameters: <TRACK>

<ARTIST>

Reply

Command: ACK
Parameters: <OK>

<ARTIST>artist May be truncated

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 180 of 201

The position of the current track within its enclosing item

[Request (and response) introduced in Protocol version 1.02]

This allows a controller to request the position (starting from 1) of the currently loaded track within
the enclosing item currently selected. Note that the tracks within that item may have been
shuffled if random mode is switched on.

This request is one of the alternatives to the standard $STATUS$<TRACK> request (see Track
status on page 58) and must be sent to a playout zone. If no item has been selected for playout,
then all of these requests (like the standard request) will result in the error, ‘ 01No media cued to
play’.

Request

Command: $STATUS$
Parameters: <TRACK>

<NUM>

Reply

Command: ACK
Parameters: <OK>

<NUM>number

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 181 of 201

The original position of the current track within its enclosing item

[Request (and response) introduced in Protocol version 1.02]

This allows a controller to request the original position (starting from 1) of the currently loaded
track within the (unshuffled) enclosing item currently selected.

This request is one of the alternatives to the standard $STATUS$<TRACK> request (see Track
status on page 58) and must be sent to a playout zone. If no item has been selected for playout,
then all of these requests (like the standard request) will result in the error, ‘ 01No media cued to
play’.

Request

Command: $STATUS$
Parameters: <TRACK>

<ORIG>

Reply

Command: ACK
Parameters: <OK>

<ORIG> original-number

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 182 of 201

The length of the current track

[Request (and response) introduced in Protocol version 1.02]

This allows a controller to request the length of the currently loaded track.

This request is one of the alternatives to the standard $STATUS$<TRACK> request (see Track
status on page 58) and must be sent to a playout zone. If no item has been selected for playout,
then all of these requests (like the standard request) will result in the error, ‘ 01No media cued to
play’.

Request

Command: $STATUS$
Parameters: <TRACK>

<LEN>

Reply

Command: ACK
Parameters: <OK>

<LEN>hhhh:mm:ss

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 183 of 201

The track id of the current track

[Request (and response) introduced in Protocol version 1.02]

This allows a controller to request the ID of the currently loaded track.

This request is one of the alternatives to the standard $STATUS$<TRACK> request (see Track
status on page 58) and must be sent to a playout zone. If no item has been selected for playout,
then all of these requests (like the standard request) will result in the error, ‘ 01No media cued to
play’.

Request

Command: $STATUS$
Parameters: <TRACK>

<ID>

Reply

Command: ACK
Parameters: <OK>

<ID>track_id

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 184 of 201

The media ID of a drive’s media

[Request (and response) introduced in Protocol version 1.02]

This request is one of the alternatives to the standard $STATUS$<DISCTYPE>discnum<MEDIA>
request (see Describing a drive’s media on page 134) and must be sent to server.

Request

Command: $STATUS$
Parameters: <DISCTYPE>discnum DISCTYPE may currently only be CD

<MEDIA>
<ID>

Reply

Command: ACK
Parameters: <OK>

<DISCTYPE>discnum

then:
<NONE> Meaning no disc is loaded

or:
<ID>media-id

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 185 of 201

The title of a drive’s media

[Request (and response) introduced in Protocol version 1.02]

This request is one of the alternatives to the standard $STATUS$<DISCTYPE>discnum<MEDIA>
request (see Describing a drive’s media on page 134) and must be sent to server.

Request

Command: $STATUS$
Parameters: <DISCTYPE>discnum DISCTYPE may currently only be CD

<MEDIA>
<NAME>

Reply

Command: ACK
Parameters: <OK>

<DISCTYPE>discnum

then:
<NONE> Meaning no disc is loaded

or:
<NAME>media-name media-name is a string

If an online database lookup (see $ONLINE$<UPDATE><TRACKDB>, p 128) has not been
performed or the media was not found in the online database used and the media details have
not been edited, then media-name is likely to be a temporary name assigned by the server, e.g.
`Album 4’.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 186 of 201

The artist for a drive’s media

[Request (and response) introduced in Protocol version 1.02]

This request is one of the alternatives to the standard $STATUS$<DISCTYPE>discnum<MEDIA>
request (see Describing a drive’s media on page 134) and must be sent to server.

Request

Command: $STATUS$
Parameters: <DISCTYPE>discnum DISCTYPE may currently only be CD

<MEDIA>
<ARTIST>

Reply

Command: ACK
Parameters: <OK>

<DISCTYPE>discnum

then:
<NONE> Meaning no disc is loaded

or:
<ARTIST>media-artist media-artist is a string

If an online database lookup (see $ONLINE$<UPDATE><TRACKDB>, p 128) has not been
performed or the media was not found in the online database used and the media details have
not been edited, then media-artist is likely to be a temporary name assigned by the server, e.g.
`Artist 4’.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 187 of 201

The genre of a drive’s media

[Request (and response) introduced in Protocol version 1.02]

This request is one of the alternatives to the standard $STATUS$<DISCTYPE>discnum<MEDIA>
request (see Describing a drive’s media on page 134) and must be sent to server.

Request

Command: $STATUS$
Parameters: <DISCTYPE>discnum DISCTYPE may currently only be CD

<MEDIA>
<GENRE>

Reply

Command: ACK
Parameters: <OK>

<DISCTYPE>discnum

then:
<NONE> Meaning no disc is loaded

or:
<GENRE>genre genre is a string

If an online database lookup (see $ONLINE$<UPDATE><TRACKDB>, p 128) has not been
performed or the media was not found in the online database used and the media details have
not been edited, then genre is likely to be `Unknown’.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 188 of 201

Whether a drive’s media has been looked up

[Request (and response) introduced in Protocol version 1.02]

This request is one of the alternatives to the standard $STATUS$<DISCTYPE>discnum<MEDIA>
request (see Describing a drive’s media on page 134) and must be sent to server.

Request

Command: $STATUS$
Parameters: <DISCTYPE>discnum DISCTYPE may currently only be CD

<MEDIA>
<LOOKUP>

Reply

Command: ACK
Parameters: <OK>

<DISCTYPE>discnum

then:
<NONE> Meaning no disc is loaded

or:
<LOOKUP>yesno yesno is either YES or NO

yesno is only YES if the media has been successfully looked up in an online database.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 189 of 201

The media number of a drive’s media

[Request (and response) introduced in Protocol version 1.02]

This request is one of the alternatives to the standard $STATUS$<DISCTYPE>discnum<MEDIA>
request (see Describing a drive’s media on page 134) and must be sent to server.

Request

Command: $STATUS$
Parameters: <DISCTYPE>discnum DISCTYPE may currently only be CD

<MEDIA>
<NUM>

Reply

Command: ACK
Parameters: <OK>

<DISCTYPE>discnum

then:
<NONE> Meaning no disc is loaded

or:
<NUM>media-num media-num is the media’s media number

(c.f. `Select media by media number’, p 50).

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 190 of 201

The title of a track in a drive’s media

[Request (and response) introduced in Protocol version 1.02]

This request is one of the alternatives to the standard $STATUS$<DISCTYPE>discnum<TRACK>
request (see Describing a drive’s media’s tracks on page 135) and must be sent to server. It
allows the name of an individual track in the media to be retrieved.

Request

Command: $STATUS$
Parameters: <DISCTYPE>discnum DISCTYPE may currently only be CD

<TRACK>
<AT>track-pos track-pos is the track number (starting from 1).
<NAME>

Reply

Command: ACK
Parameters: <OK>

<DISCTYPE>discnum
<TRACK>

then:
<NONE> Meaning no disc is loaded

or:
<AT>track-pos
<NAME>track-name track-name is a string

or:
<AT>track-pos
<NAME>
<NONE> Meaning there is no track number track-pos

If an online database lookup (see $ONLINE$<UPDATE><TRACKDB>, p 128) has not been
performed or the media was not found in the online database used and the media details have
not been edited, then track-name is likely to be a temporary name assigned by the server, e.g.
`Track 7’.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 191 of 201

The length of a track in a drive’s media

[Request (and response) introduced in Protocol version 1.02]

This request is one of the alternatives to the standard $STATUS$<DISCTYPE>discnum<TRACK>
request (see Describing a drive’s media’s tracks on page 135) and must be sent to server. It
allows the length of an individual track in the media to be retrieved.

Request

Command: $STATUS$
Parameters: <DISCTYPE>discnum DISCTYPE may currently only be CD

<TRACK>
<AT>track-pos track-pos is the track number (starting from 1).
<LEN>

Reply

Command: ACK
Parameters: <OK>

<DISCTYPE>discnum
<TRACK>

then:
<NONE> Meaning no disc is loaded

or:
<AT>track-pos
<LEN>hhhh:mm:ss

or:
<AT>track-pos
<LEN>
<NONE> Meaning there is no track number track-pos

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 192 of 201

Retrieving a single field from a single database cache item

[Request (and response) introduced in Protocol version 1.02]

This request is an alternative to the standard
$SEARCH$<CACHE><LIST><MARKER>marker<FROM>fff<FOR>rrr request (see Listing a
cache on page 96) and must be sent to server. It allows an individual field of the item at a
particular position in the specified cache to be retrieved.

Request

Command: $SEARCH$
Parameters: <CACHE>

<LIST>
<MARKER>marker The value returned when the cache was opened
<AT>item-pos Position (starting at 1) within the cache
<FIELD> See below

Reply

Command: ACK
Parameters:

Either:
<ERROR>
<MESSAGE>16Cache marker no longer valid

Or:
<OK>
<AT>item-pos
<FIELD>value

Or if item-pos is beyond the last item in the cache:
<OK>
<AT>item-pos
<EOF>

FIELD may be any field (e.g. NAME, MEDIA, ID, ARTIST, GENRE) which is valid for the type of
cache specified by marker. See Table xi: Cache elements on page 93.

If the error occurs, the marker should be considered invalid, and closed. The controller does not
need to (and should not) close it.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 193 of 201

Appendix A: Differences between 1.00 and 1.01

These are the differences between Protocol versions 1.00 and 1.01:

• The message-sequence-char becomes optional (with caveats that we do not recommend
making use of this feature);

• The checksum can be zero, two- or four-digit hex, with differing meanings for each. We do
not recommend using zero-digit checksums.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 194 of 201

Appendix B: Differences between 1.01 and 1.02

These are the differences between Protocol versions 1.01 and 1.02 :-

1. There is a new request to obtain playlist track details (Playlist track details, page 91);

2. A <DONE> parameter will be appended to a play-state update (Play-state Update, page 67)
and to the reply to a $STATUS$<MODE> request (Operating mode, page 55) if playout has
reached the end of the selected item;

3. There is a new update to report configuration changes (Configuration update, page 82);

4. There is a new command to report external modification of the database (Reporting an
external modification of the database, page 123);

5. There is a new request to obtain the free space remaining on the server in terms of playing
time (Free space on the server in terms of playback time, page 63);

6. An reply to an $ONLINE$<WANT>{<ON>|<OFF>} request reporting that the requested state
has not been attained may now have <TYPE>IXXdetail appended giving an indication of why
the transition failed (Requesting on/offline state, page 125).

7. ONLINE updates are now sent to report each stage of each connection attempt made when
responding to a request to go online and thus can have a number of new parameters
appended to them (On/offline update, page 73).

8. The reply to the request to list tracks on a disc (in one of the server’s drives) now has <EOF>
appended if the tracks listed end with the last track on the disc (Describing a drive’s
media’s tracks, page 135). This brings it into line with other list replies.

9. The media number for the disc concerned has been appended to RECORD updates
(Record state update, page 69) and to the reply to
$STATUS$<DISCTYPE>discnum<MEDIA> (Describing a drive’s media, page 134).

10. A new variant of the media availability update ($UPDATE$<DISCTYPE>discnum<NONE>) is
sent when media becomes unavailable (Media availability update, page 72).

11. The state of a disc drive tray may now be toggled in addition to explicitly opening or closing it
(Opening or closing the drive door (ejecting or loading a disc), page 136).

12. Options have been added to the $SELECT$<ID>id request to allow playout to be started (or
restarted) at a particular track within a playlist or media, all within one operation (Select
media, playlists or individual tracks by ID, page 48).

13. The operation of looking up media in an online database can now be cancelled using
$ONLINE$<UPDATE><TRACKDB><ABORT> (Aborting a TRACKDB update, page 130).

14. Empty playlists can now be created using $SEARCH$<COMMIT><NAME>name
(Committing a playlist without searches, page 120).

15. A number of new configuration items have been added (Configuring the server, page 149).
Items under DefaultEncodings allow the default encoding for a particular track type to be
queried or set. This is the encoding which will be used in response to a $RECORD$ request
with no <COMPR> parameter. (See the note added to Recording a disc’s contents, page

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 195 of 201

138). The PortUsers and PortUserSettings categories allow specification and configuration of
the applications listening on particular ports. Which controllers manage which playout zones
is now configurable under the Controllers category, with the number of channels which
supported controllers are capable of managing being available under NumCtrlrChans.

16. Some new warning and error codes have been added (Error and warning codes, page 27)

17. A set of alternative XiVA-Link requests have been introduced for use in controllers with input
buffers smaller than the standard maximum size (1024 bytes) for XiVA-Link packets
(Alternative requests for controllers with small input buffers, page 159)

18. New requests have been added to provide access to the power mode of the server
(Querying and setting the power mode, page 157)(Power mode update on page 83).

19. The response of the server to $PING$<RESET> has been enhanced so that this request can
now be used for proper session management (Starting a new session, page 31).

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 196 of 201

Appendix C: Fixed errata

Errors in Revisions up to 33 fixed in Revision 34 :-

1. In Revision 33 (Play-state Update), the specified order of the parameters in a <MODE>
update was incorrect. The <POS> and <MSECS> parameters were swapped with the
<NUM> and <ORIG> parameters; the former precede rather than follow the latter.

2. In Revision 33 (Select by track Reply), the list of parameters in the ACK to a
$SELECT$<TRACK> request was specified as including a final <COMPR> parameter to
indicate the compression of the track. This was a transient development feature and was
never released.

3. In Revision 33 (Requesting on/offline state), it was stated that an ACK<OK> response
indicated only that the request had been received. It actually means that the server
successfully entered (or was already in) the requested online state.

4. In Revision 33 (Requesting a TRACKDB update), it was stated that an ACK<OK>
response indicated only that the operation to look up an item in an online database had
begun. In fact, it means that the operation has succeeded; additional parameters specify the
number of items that were looked up and how many of these were not found. If the lookup
fails or is aborted, an additional parameter specifies the number of items that remained to be
looked up at the time.

5. In Revision 33 (Recording a disc’s contents), it was stated that an ACK<OK> response
indicated only that the recording operation had begun. Such a response is not actually sent
until the record operation ends (for whatever reason) and there are additional parameters to
specify the number of tracks which were requested to be recorded, the number which failed
to be recorded and the number which remained to be attempted when recording ended.

6. In Revision 33 (Recording a disc’s contents), the optional <COMPR> parameter in a
$RECORD$ request was not described. This may be used to specify the type of encoding
used in the recording.

Errors in Revisions up to 36 fixed in Revision 37

1. In Revision 36 and earlier (Committing a playlist without searches and Committing
category searches), the optional <REPLACE> parameter in $SEARCH$<COMMIT>
requests used to create playlists was not documented. This parameter allows an existing
playlist to be overwritten by a new one of the same name and has actually been available
since version 1.01 of the Protocol.

2. In Revision 36 and earlier (Commands – general principles and Error and warning
codes), there were several cases in which the <MESSAGE> parameter was omitted from
descriptions of ACK<ERROR><MESSAGE>XXmessage or
ACK<WARNING><MESSAGE>XXmessage.

Error in Revision 37 fixed in Revision 38

1. In Revision 37 (Querying the power mode), the <MODE> parameter was omitted from the
description of the $STATUS$<POWER><MODE> request.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 197 of 201

Errors in Revisions up to 38 fixed in Revision 39

1. In Revision 38 and earlier (Play status), the description of the reply to $STATUS$<PLAY>
when the selected item is a static playlist incorrectly included an <ARTIST> parameter. Unlike
tracks and media, no artist is associated with a playlist.

2. In Revision 38 and earlier (TRACKDB change update), the description of the
$STATUS$<UPDATE><TRACKDB>onoff request omitted the onoff (ON or OFF) argument.

3. In Revision 38 and earlier (PLAYLISTDB change update), the descriptions of the
$STATUS$<UPDATE><PLAYLISTDB>onoff request and the $UPDATE$<PLAYLISTDB>
update were incorrect.

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 198 of 201

Appendix D: Publication approvals

Unless the Managerial sign-off post-dates the most recent change in the revision history, this
document is not approved for external release.

The Manager signing off must ensure that any changes since the previously released version
have been checked for technical and legal issues.

Approved for By When
Technical sign-off Andrew Fyfe 2001/10/22

Legal sign-off Chris Janes 2001/10/22

Managerial sign-off for release Andrew Fyfe 2001/10/22

Table xviii: Publication approvals

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 199 of 201

Appendix E: Revision history

Revision Date Who Changes
039 2001-10-11 Richard

Shaw
• Fixed some errors as detailed in Appendix C:

Fixed errata.
038 2001-09-25 Richard

Shaw
• Added specification of maximum cache marker

length.
• Corrected an error in the power mode query

syntax as detailed in Appendix C: Fixed errata.
037 2001-08-06 Richard

Shaw
• Updated to incorporate further revisions of the

1.02 version definition (more small-reply-buffer
requests, session management changes, standby
mode control).

• Updated the comments on
$STATUS$<DISCTYPE>discnum<MEDIA>.

• Corrected further errata as detailed in Appendix C:
Fixed errata.

036 2001-07-20 Richard
Shaw

• Updated to incorporate revisions of the 1.02
version definition.

• Added the current definition of `session’ to the
Glossary.

035 2001-07-18 Jon Green • No semantic changes; just converted to Imerge
Ltd.’s new house style for published documents.

034 2001-07-10 Richard
Shaw

• Defined 1.02, with changes from 1.01 as detailed
in Appendix B

• Fixed some errata as detailed in Appendix C:
Fixed errata.

• Added comments about play-state.
• Added note about what must be done when

playout stops due to the end of the selected item
being reached to allow a further $PLAY$ request
to succeed.

033 2000-11-10 Jon Green • Define 1.01, in which the only significant changes
are that the message-sequence-char becomes
optional, and the checksum contents can be
simplified.

032 2000-11-06 Jon Green • Protocol specification goes live!
• Version negotiation removed indefinitely:

$VERSION$<CURRENT>M.mm<WANT>M.mm
deprecated

• Command-word upper size limit increased from 9
to 10

• Param-word upper size limit increased from 11 to
12

• $RS232$ commands removed completely
• (Clarification) Playout destination names will not

always be Z01, Z02, and so on
• Enhanced description of version numbering
• Description (in Commands – General

Principles) of what happens to packets with
invalid destinations or invalid contents.

• Full list of error messages and warnings, current

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 200 of 201

to 1.00 release version.
• $STOP$<AFTER> deprecated – it may be

reintroduced into future versions
• $PLAY$<RATIO> deprecated – it will probably be

reintroduced into future versions
• $PLAY$<FLAG> and $STATUS$<PLAY><FLAG>

added.
• <MSECS> parameter added to $PLAY$<SKIP>
• $PLAY$<SKIP> warning reply format corrected
• Track update $UPDATE$ format corrected.
• Updates get their own chapter
• Update types considerably expanded
• DPLISTs (dynamic playlists) not supported at

1.00.
• Fixed incorrect descriptions of

$SEARCH$<type><ID> commands (type is
TRACK, MEDIA or PLAYLIST) to describe more
accurately how to use the no-id variants.

• $SEARCH$<TRACK> reply format corrected
• $SEARCH$<TRACK><ID><FULL> added
• $SEARCH$<MEDIA> reply format corrected.
• $SEARCH$<MEDIA><TRACK> and variants

added.
• $SEARCH$<DELETE><ENTRY> deprecated.
• $SEARCH$<PLAYLIST> reply format corrected.
• $SEARCH$<CACHE> commands added.
• $ALTER$ commands added.
• $DELETE$ commands added.
• $CONFIG$ commands added.

031 2000-08-24 Jon Green • “Future Directions” section integrated into main
body of specification;

• Extensions for new update types, disk information
and database modification added

• WARNING: this does not include all current
commands. A future update will correct
omissions.

030 2000-06-06 Jon Green • $SELECT$<MEDIA> enhanced and clarified
• New $SEARCH$<INFO> command
• $SEARCH$<COUNT>: ***correction***:

comparison using <LIKE> is case sensitive
• $SEARCH$<COUNT>: <RECYCLE> parameter

withdrawn
• $SEARCH$<LIST>: more than one <CAT> now

permitted
• $SEARCH$<LIST>: reply format changed
• $SEARCH$<DELETE><TAG><ALL> deprecated
• $SEARCH$<RENAME> moved to 0.80
• New command: $SEARCH$<INFO><ID>
• $SEARCH$<DELETE><TAG> can now take more

than one tag at a time
• $SEARCH$<DELETE><ENTRY> is temporarily

withdrawn, pending a review
• $SEARCH$ operations on <DPLIST>s have been

XiVA (tm) -Link Protocol Specification - Protocol version 1.02 - Revision 0.39
 Page 201 of 201

postponed until 0.80 at least
• $SEARCH$<COMMIT><TAG>: parameter

<NAME> is now mandatory
• $SEARCH$<COMMIT>: reply enhanced.
• $SEARCH$<COMMIT>: clarification on which

types of tags can be <COMMIT>ted to
<DPLIST>s.

• <SPLISTDB> database introduced.
• Much revision of search examples.
• All occurrences of <WARN> are changed to

<WARNING>, correcting an historical mistake.
The server has always generated <WARNING>s.

029 2000-04-13 Jon Green • Fixed the background information in Appendix A
(Future Directions) that wasn’t customer-friendly.

028 2000-04-12 Jon Green • Formal grammar fixed
• ACK<RXD> no longer guarantees to repeat

after 10s delay
• $PLAY$<RATIO> and $STOP$<AFTER> not

supported until at least 0.80.
• Added "Future directions" appendix

027 2000-03-08 Jon Green • Changed format of replies to $SEARCH$ variants
<TRACK>, <MEDIA> and <PLAYLIST><ID>.

026 2000-01-25 Jon Green • Now defining version 0.70; removed all temporary
details (0.30, 0.50).

• Checksum moved to end of packet.
• Quoting mechanism changed to backslash from

HTML-like.
• 0.30 MEDIA operations made permanent.
• 0.30-specific details removed.
• Source-ID is no longer optional.
• Minimum response time to ACK a command

increased from 1s to 5s.
• Note that timed updates always happen at 5-6s

intervals regardless of requested frequency.
025
(0.25)

1999-11-02 Jon Green • Updated heavily to reflect feedback from
customers;

• Changed ‘DISC’ to ‘MEDIA’ throughout;
• Added revision history;
• Added restricted subset 0.50 for CES.
• Changed <PLAYLIST-ID> to <PLAYLIST> in

$SEARCH$<COMMIT><ID>.
• There are no parameters with white-space or

hyphens in their names any more. Grammar
updated to reflect this.

023
(0.23)

1999-10-05 Jon Green • Improved formatting; included TOC

022
(0.22)

1999-10-04 Jon Green /
Richard
Caton

• Initial document created

Table xix: Revision history

